版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
北京三中2025屆數(shù)學(xué)高二上期末調(diào)研模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知點在平面α上,其法向量,則下列點不在平面α上的是()A. B.C. D.2.橢圓C:的焦點在x軸上,其離心率為則橢圓C的長軸長為()A.2 B.C.4 D.83.的展開式中,常數(shù)項為()A. B.C. D.4.已知函數(shù)(其中)的部分圖像如圖所示,則函數(shù)的解析式為()A. B.C. D.5.拋物線的準(zhǔn)線方程是,則實數(shù)的值為()A. B.C.8 D.6.已知為偶函數(shù),且,則___________.7.給出下列四個說法,其中正確的是A.命題“若,則”的否命題是“若,則”B.“”是“雙曲線的離心率大于”的充要條件C.命題“,”的否定是“,”D.命題“在中,若,則是銳角三角形”的逆否命題是假命題8.五行學(xué)說是中華民族創(chuàng)造的哲學(xué)思想.古代先民認(rèn)為,天下萬物皆由五種元素組成,分別是金、木、水、火、土,彼此之間存在如圖所示的相生相克關(guān)系.若從金、木、水、火、土五種元素中任取兩種,則這兩種元素恰是相生關(guān)系的概率是()A. B.C. D.9.在某市第一次全民核酸檢測中,某中學(xué)派出了8名青年教師參與志愿者活動,分別派往2個核酸檢測點,每個檢測點需4名志愿者,其中志愿者甲與乙要求在同一組,志愿者丙與丁也要求在同一組,則這8名志愿者派遣方法種數(shù)為()A.20 B.14C.12 D.610.已知是橢圓上的一點,則點到兩焦點的距離之和是()A.6 B.9C.14 D.1011.甲組數(shù)據(jù)為:5,12,16,21,25,37,乙組數(shù)據(jù)為:1,6,14,18,38,39,則甲、乙的平均數(shù)、極差及中位數(shù)相同的是()A.極差 B.平均數(shù)C.中位數(shù) D.都不相同12.一條光線從點射出,經(jīng)軸反射后與圓相切,則反射光線所在直線的斜率為()A.或 B.或C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,定點,若直線與拋物線相交于、兩點(點在、中間),且與拋物線的準(zhǔn)線交于點,若,則的長為______.14.已知橢圓的右頂點為A,上頂點為B,且直線l與橢圓交于C,D兩點,若直線l直線AB,設(shè)直線AC,BD的斜率分別為,,則的值為___________.15.若方程表示的曲線是雙曲線,則實數(shù)m的取值范圍是___;該雙曲線的焦距是___16.若圓心坐標(biāo)為圓被直線截得的弦長為,則圓的半徑為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(Ⅰ)討論函數(shù)的極值點的個數(shù)(Ⅱ)若,,求的取值范圍18.(12分)已知等差數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前n項和.19.(12分)已知數(shù)列滿足且.(1)證明數(shù)列是等比數(shù)列;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項公式.20.(12分)如圖,四棱錐P-ABCD的底面ABCD是菱形,PA⊥AB,PA⊥AD,且E、F分別是AC、PB的中點(1)證明:EF∥平面PCD;(2)求證:平面PBD⊥平面PAC21.(12分)已知直線過點,且其傾斜角是直線的傾斜角的(1)求直線的方程;(2)若直線與直線平行,且點到直線的距離是,求直線的方程22.(10分)已知函數(shù)(1)求函數(shù)在點處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間及極值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)法向量的定義,利用向量垂直對四個選項一一驗證即可.【詳解】對于A:記,則.因為,所以點在平面α上對于B:記,則.因為,所以點在平面α上對于C:記,則.因為,所以點在平面α上對于D:記,則.因為,所以點不在平面α上.故選:D2、C【解析】根據(jù)橢圓的離心率,即可求出,進(jìn)而求出長軸長.【詳解】由橢圓的性質(zhì)可知,橢圓的離心率為,則,即所以橢圓C的長軸長為故選:C.【點睛】本題主要考查了橢圓的幾何性質(zhì),屬于基礎(chǔ)題.3、A【解析】寫出展開式通項,令的指數(shù)為零,求出參數(shù)的值,代入通項計算即可得解.【詳解】的展開式通項為,令,可得,因此,展開式中常數(shù)項為.故選:A.4、B【解析】根據(jù)題圖有且,結(jié)合五點法求參數(shù),即可得的解析式.【詳解】由圖知:且,則,所以,則,即,又,可得,,則,,又,即有.綜上,.故選:B5、B【解析】化簡方程為,求得拋物線的準(zhǔn)線方程,列出方程,即可求解.【詳解】由拋物線,可得,所以,所以拋物線的準(zhǔn)線方程為,因為拋物線的準(zhǔn)線方程為,所以,解得.故選:B.6、8【解析】由已知條件中的偶函數(shù)即可計算出結(jié)果,【詳解】為偶函數(shù),且,.故答案為:87、D【解析】A選項:否命題應(yīng)該對條件結(jié)論同時否定,說法不正確;B選項:雙曲線的離心率大于,解得,所以說法不正確;C選項:否定應(yīng)該是:,,所以說法不正確;D選項:“在中,若,則是銳角三角形”是假命題,所以其逆否命題也為假命題,所以說法正確.【詳解】命題“若,則”的否命題是“若,則”,所以A選項不正確;雙曲線的離心率大于,即,解得,則“”是“雙曲線的離心率大于”的充分不必要條件,所以B選項不正確;命題“,”的否定是“,”,所以C選項不正確;命題“在中,若,則是銳角三角形”,在中,若,可能,此時三角形不是銳角三角形,所以這是一個假命題,所以其逆否命題也是假命題,所以該選項說法正確.故選:D【點睛】此題考查四個命題關(guān)系,充分條件與必要條件,含有一個量詞的命題的否定,關(guān)鍵在于弄清邏輯關(guān)系,正確求解.8、C【解析】先計算從金、木、水、火、土五種元素中任取兩種的所有基本事件數(shù),再計算其中兩種元素恰是相生關(guān)系的基本事件數(shù),利用古典概型概率公式,即得解【詳解】由題意,從金、木、水、火、土五種元素中任取兩種,共有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木土),(水,火),(水,土),(火,土),共10個基本事件,其中兩種元素恰是相生關(guān)系包含(金,木),(木,土),(土,水),(水,火)(火,金)共5個基本事件,所以所求概率.故選:C9、B【解析】分(甲乙)、(丙丁)再同一組和不在同一組兩種情況討論,按照分類、分步計數(shù)原理計算可得;【詳解】解:依題意甲乙丙丁四人再同一組,有種;(甲乙),(丙丁)不在同一組,先從其余4人選2人與甲乙作為一組,另外2人與丙丁作為一組,再安排到兩個核酸檢測點,則有種,綜上可得一共有種安排方法,故選:B10、A【解析】根據(jù)橢圓的定義,可求得答案.【詳解】由可知:,由是橢圓上的一點,則點到兩焦點的距離之和為,故選:A11、B【解析】由平均數(shù)、極差及中位數(shù)的定義依次求解即可比較【詳解】,,故甲、乙的平均數(shù)相同,甲、乙的極差分別為,,故不同,甲、乙的中位數(shù)分別為,,故不同,故選:12、D【解析】由光的反射原理知,反射光線的反向延長線必過點,設(shè)反射光線所在直線的斜率為,則反射光線所在直線方程為:,即:.又因為光線與圓相切,所以,,整理:,解得:,或,故選D考點:1、圓的標(biāo)準(zhǔn)方程;2、直線的方程;3、直線與圓的位置關(guān)系.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分別過點、作、垂直于拋物線的準(zhǔn)線于、,則,求出直線的方程,可求得拋物線的焦點的坐標(biāo),可得出拋物線的標(biāo)準(zhǔn)方程,再將直線的方程與拋物線的方程聯(lián)立,求出點的縱坐標(biāo),利用拋物線的定義可求得線段的長.【詳解】如圖,分別過點、作、垂直于拋物線的準(zhǔn)線于、,則,由得,所以,,又,所以,直線的方程為,所以,,則,則拋物線的方程為,設(shè)點的縱坐標(biāo)為,由,得或,因為點在、之間,則,所以,.故答案為:.14、##0.25【解析】求出點A,B坐標(biāo),設(shè)出直線l的方程,聯(lián)立直線l與橢圓方程,借助韋達(dá)定理即可計算作答.【詳解】依題意,點,直線AB斜率為,因直線l直線AB,則設(shè)直線l方程為:,,由消去y并整理得:,,解得,于是有或,設(shè),則,有,因此,,所以的值為.故答案:15、①.②.2【解析】由題意可得,由此可解得m的范圍,進(jìn)一步將方程化為標(biāo)準(zhǔn)方程即可求得焦距【詳解】由所表示的曲線是雙曲線,可知,解得,當(dāng)時,方程可變?yōu)椋?,此時雙曲線焦距為,當(dāng)時,m不存在,不合題意;故雙曲線的焦距:故答案為:;16、【解析】利用垂徑定理計算即可.【詳解】設(shè)圓的半徑為,則,得.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)答案見解析;(Ⅱ).【解析】(Ⅰ)求得,分,和三種情況討論,求得函數(shù)的單調(diào)性,結(jié)合極值的概念,即可求解;(Ⅱ)由不等式,轉(zhuǎn)化為當(dāng)時,不等式恒成立,設(shè),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.【詳解】(Ⅰ)由題意,函數(shù)的定義域為,且,當(dāng)時,令,解得,令,解得或,故在上單調(diào)遞減,在,上單調(diào)遞增,所以有一個極值點;當(dāng)時,令,解得或,令,得,故在,上單調(diào)遞減,在上單調(diào)遞增,所以有一個極值點;當(dāng)時,上單調(diào)遞增,在上單調(diào)遞減,所以沒有極值點綜上所述,當(dāng)時,有個極值點;當(dāng)時,沒有極值點.(Ⅱ)由,即,可得,即當(dāng)時,不等式恒成立,設(shè),則設(shè),則因為,所以,所以在上單調(diào)遞增,所以,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,所以所以的取值范圍是.【點睛】對于利用導(dǎo)數(shù)研究不等式的恒成立問題的求解策略:1、通常要構(gòu)造新函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出最值,從而求出參數(shù)的取值范圍;2、利用可分離變量,構(gòu)造新函數(shù),直接把問題轉(zhuǎn)化為函數(shù)的最值問題3、根據(jù)恒成求解參數(shù)的取值時,一般涉及分類參數(shù)法,但壓軸試題中很少碰到分離參數(shù)后構(gòu)造的新函數(shù)能直接求出最值點的情況,通常要設(shè)出導(dǎo)數(shù)的零點,難度較大.18、(1);(2).【解析】(1)將條件化為基本量并解出,進(jìn)而求得答案;(2)通過裂項法即可求出答案.【小問1詳解】由,.得:解得:故.【小問2詳解】當(dāng)時,.所以時,.19、(1)證明見解析;(2).【解析】(1)根據(jù)題意可得,根據(jù)等比數(shù)列的定義,即可得證;(2)由(1)可得,可得,利用累加法即可求得數(shù)列的通項公式.【詳解】(1)因為,所以,即,所以是首項為1公比為3的等比數(shù)列(2)由(1)可知,所以因為,所以……,,各式相加得:,又,所以,又當(dāng)n=1時,滿足上式,所以20、(1)證明見解析;(2)證明見解析.【解析】(1)連結(jié),證明EF∥PD即可;(2)證明BD⊥平面PAC即可【小問1詳解】連結(jié),則是的中點,又是的中點,,又平面,面,平面【小問2詳解】∵PA⊥AB,PA⊥AD,AB∩AD=A,AB、AD平面ABCD,∴PA⊥平面ABCD,∵BD平面ABCD,∴PA⊥BD,是菱形,,又,平面,又平面,∴平面平面﹒21、(1);(2)或【解析】(1)先求得直線的傾斜角,由此求得直線的傾斜角和斜率,進(jìn)而求得直線的方程;(2)設(shè)出直線的方程,根據(jù)點到直線的距離列方程,由此求解出直線的方程【詳解】解(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年視頻會議、信息發(fā)布系統(tǒng)項目可行性研究報告
- 北京印刷學(xué)院《研究方法與學(xué)術(shù)寫作》2023-2024學(xué)年第一學(xué)期期末試卷
- 北京印刷學(xué)院《廣播新聞》2023-2024學(xué)年第一學(xué)期期末試卷
- 2024年絕緣耐溫薄膜項目可行性研究報告
- 關(guān)于學(xué)生實習(xí)報告模板六篇
- 2024年甜柿椒類項目可行性研究報告
- 2025年度工傷賠償個人協(xié)議執(zhí)行流程全文3篇
- 親子共讀心得體會15篇
- 2024年屯溪區(qū)牙科醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 2025年度高新技術(shù)企業(yè)研發(fā)借款合同范本及范文3篇
- 《公司戰(zhàn)略與風(fēng)險管理》期末復(fù)習(xí)試題+答案
- QES三體系內(nèi)審檢查表 含審核記錄
- 《機械識圖》(第四版)完整版教學(xué)課件全書電子講義(最新)
- 檔案借閱申請
- DB33∕2169-2018 城鎮(zhèn)污水處理廠主要水污染物排放標(biāo)準(zhǔn)
- 墩柱施工操作平臺相關(guān)計算
- 高職院校油層物理說課
- 計算機課件:計算機安全
- SCH壁厚等級對照表
- 35kv及以下架空線路施工及驗收規(guī)范
- 山東昌樂二中“271高效課堂”解讀
評論
0/150
提交評論