版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省駐馬店經(jīng)濟(jì)開(kāi)發(fā)區(qū)高級(jí)中學(xué)2025屆高二上數(shù)學(xué)期末預(yù)測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書(shū)寫(xiě),字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知過(guò)點(diǎn)A(a,0)作曲線C:y=x?ex的切線有且僅有兩條,則實(shí)數(shù)a的取值范圍是()A.(﹣∞,﹣4)∪(0,+∞) B.(0,+∞)C.(﹣∞,﹣1)∪(1,+∞) D.(﹣∞,﹣1)2.拋物線的準(zhǔn)線方程是,則實(shí)數(shù)的值為()A. B.C.8 D.3.與的等差中項(xiàng)是()A. B.C. D.4.已知在等比數(shù)列中,,,則()A.9或 B.9C.27或 D.275.橢圓的兩焦點(diǎn)之間的距離為A. B.C. D.6.設(shè)函數(shù),則()A.4 B.5C.6 D.77.已知雙曲線的對(duì)稱軸為坐標(biāo)軸,一條漸近線為,則雙曲線的離心率為A.或 B.或C.或 D.或8.已知方程表示焦點(diǎn)在軸上的橢圓,則實(shí)數(shù)的取值范圍是()A. B.C. D.9.等差數(shù)列中,為其前項(xiàng)和,,則的值為()A.13 B.16C.104 D.20810.設(shè)是周期為2的奇函數(shù),當(dāng)時(shí),,則()A. B.C. D.11.若圓與圓相外切,則的值為()A. B.C.1 D.12.已知圓和橢圓.直線與圓交于、兩點(diǎn),與橢圓交于、兩點(diǎn).若時(shí),的取值范圍是,則橢圓的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.歐陽(yáng)修在《賣(mài)油翁》中寫(xiě)道:(翁)乃取一葫蘆置于地,以錢(qián)覆其口,徐以杓酌油瀝之,自錢(qián)孔入,而錢(qián)不濕,可見(jiàn)“行行出狀元”,賣(mài)油翁的技藝讓人嘆為觀止.若銅錢(qián)是直徑為4cm的圓,中間有邊長(zhǎng)為1cm的正方形孔,若你隨機(jī)地向銅錢(qián)上滴一滴油,則油(油滴的大小忽略不計(jì))正好落入孔中的概率是_______14.已知定義在R上的函數(shù)的導(dǎo)函數(shù),且,則實(shí)數(shù)的取值范圍為_(kāi)_________.15.已知,分別是雙曲線的左、右焦點(diǎn),P是其一條漸近線上的一點(diǎn),且以為直徑的圓經(jīng)過(guò)點(diǎn)P,則的面積為_(kāi)__________.16.已知直線過(guò)點(diǎn),,且是直線的一個(gè)方向向量,則__________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列的前n項(xiàng)和為,當(dāng)時(shí),;數(shù)列中,.直線經(jīng)過(guò)點(diǎn)(1)求數(shù)列的通項(xiàng)公式和;(2)設(shè),求數(shù)列的前n項(xiàng)和,并求的最大整數(shù)n18.(12分)設(shè)命題p:,命題q:關(guān)于x的方程無(wú)實(shí)根.(1)若p為真命題,求實(shí)數(shù)m的取值范圍;(2)若為假命題,為真命題,求實(shí)數(shù)m的取值范圍19.(12分)在中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,滿足(1)求A的大??;(2)若,的面積為,求的周長(zhǎng)20.(12分)已知橢圓的上下兩個(gè)焦點(diǎn)分別為,,過(guò)點(diǎn)與y軸垂直的直線交橢圓C于M,N兩點(diǎn),△的面積為,橢圓C的離心率為(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)已知O為坐標(biāo)原點(diǎn),直線與y軸交于點(diǎn)P,與橢圓C交于A,B兩個(gè)不同的點(diǎn),若存在實(shí)數(shù),使得,求m的取值范圍21.(12分)如圖,在梯形中,,,平面,四邊形為矩形,點(diǎn)為線段的中點(diǎn),且(1)求證:平面平面;(2)若平面與平面所成銳二面角的余弦值為,則三棱錐F-ABC的體積為多少?22.(10分)已知圓心C的坐標(biāo)為,且是圓C上一點(diǎn)(1)求圓C的標(biāo)準(zhǔn)方程;(2)過(guò)點(diǎn)的直線l被圓C所截得的弦長(zhǎng)為,求直線l的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】設(shè)出切點(diǎn),對(duì)函數(shù)求導(dǎo)得到切點(diǎn)處的斜率,由點(diǎn)斜式得到切線方程,化簡(jiǎn)為,整理得到方程有兩個(gè)解即可,解出不等式即可.【詳解】設(shè)切點(diǎn)為,,,則切線方程為:,切線過(guò)點(diǎn)代入得:,,即方程有兩個(gè)解,則有或.故答案為:A.【點(diǎn)睛】這個(gè)題目考查了函數(shù)的導(dǎo)函數(shù)的求法,以及過(guò)某一點(diǎn)的切線方程的求法,其中應(yīng)用到導(dǎo)數(shù)的幾何意義,一般過(guò)某一點(diǎn)求切線方程的步驟為:一:設(shè)切點(diǎn),求導(dǎo)并且表示在切點(diǎn)處的斜率;二:根據(jù)點(diǎn)斜式寫(xiě)切點(diǎn)處的切線方程;三:將所過(guò)的點(diǎn)代入切線方程,求出切點(diǎn)坐標(biāo);四:將切點(diǎn)代入切線方程,得到具體的表達(dá)式.2、B【解析】化簡(jiǎn)方程為,求得拋物線的準(zhǔn)線方程,列出方程,即可求解.【詳解】由拋物線,可得,所以,所以拋物線的準(zhǔn)線方程為,因?yàn)閽佄锞€的準(zhǔn)線方程為,所以,解得.故選:B.3、A【解析】代入等差中項(xiàng)公式即可解決.【詳解】與的等差中項(xiàng)是故選:A4、B【解析】根據(jù)等比數(shù)列的性質(zhì)可求.【詳解】因?yàn)闉榈缺葦?shù)列,設(shè)公比為,則,解得,又,所以.故選:B.5、C【解析】根據(jù)題意,由于橢圓的方程為,故可知長(zhǎng)半軸的長(zhǎng)為,那么可知兩個(gè)焦點(diǎn)的坐標(biāo)為,因此可知兩焦點(diǎn)之間的距離為,故選C考點(diǎn):橢圓的簡(jiǎn)單幾何性質(zhì)點(diǎn)評(píng):解決的關(guān)鍵是將方程變?yōu)闃?biāo)準(zhǔn)式,然后結(jié)合性質(zhì)得到結(jié)論,屬于基礎(chǔ)題6、D【解析】求出函數(shù)的導(dǎo)數(shù),將x=1代入即可求得答案.【詳解】,故,故選:D.7、B【解析】分雙曲線的焦點(diǎn)在軸上和在軸上兩種情況討論,求出的值,利用可求得雙曲線的離心率的值.【詳解】若焦點(diǎn)在軸上,則有,則雙曲線的離心率為;若焦點(diǎn)在軸上,則有,則,則雙曲線的離心率為.綜上所述,雙曲線的離心率為或.故選:B.【點(diǎn)睛】本題考查雙曲線離心率的求解,在雙曲線的焦點(diǎn)位置不確定的情況下,要對(duì)雙曲線的焦點(diǎn)位置進(jìn)行分類(lèi)討論,考查計(jì)算能力,屬于基礎(chǔ)題.8、D【解析】根據(jù)已知條件可得出關(guān)于實(shí)數(shù)的不等式組,由此可解得實(shí)數(shù)的取值范圍.【詳解】因?yàn)榉匠瘫硎窘裹c(diǎn)在軸上的橢圓,則,解得.故選:D.9、D【解析】利用等差數(shù)列下標(biāo)的性質(zhì),結(jié)合等差數(shù)列前項(xiàng)和公式進(jìn)行求解即可.【詳解】由,所以,故選:D10、A【解析】由周期函數(shù)得,再由奇函數(shù)的性質(zhì)通過(guò)得結(jié)論【詳解】∵函數(shù)是周期為2的周期函數(shù),∴,而,又函數(shù)為奇函數(shù),∴.故選A【點(diǎn)睛】本題考查函數(shù)的周期性與奇偶性,屬于基礎(chǔ)題.此類(lèi)題型,求函數(shù)值時(shí),一般先用周期性化自變量到已知區(qū)間關(guān)于原點(diǎn)對(duì)稱的區(qū)間,然后再由奇函數(shù)性質(zhì)求得函數(shù)值11、D【解析】確定出兩圓的圓心和半徑,然后由兩圓的位置關(guān)系建立方程求解即可.【詳解】由可得,所以圓的圓心為,半徑為,由可得,所以圓的圓心為,半徑為,因?yàn)閮蓤A相外切,所以,解得,故選:D12、C【解析】由題設(shè),根據(jù)圓與橢圓的對(duì)稱性,假設(shè)在第一象限可得,結(jié)合已知有,進(jìn)而求橢圓的離心率.【詳解】由題設(shè),圓與橢圓的如下圖示:又時(shí),的取值范圍是,結(jié)合圓與橢圓的對(duì)稱性,不妨假設(shè)在第一象限,∴從0逐漸增大至無(wú)窮大時(shí),,故,∴故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分別求出圓和正方形的面積,結(jié)合幾何概型的面積型計(jì)算公式進(jìn)行求解即可.【詳解】因?yàn)殂~錢(qián)的面積為,正方形孔的面積為,所以隨機(jī)地向銅錢(qián)上滴一滴油,則油(油滴的大小忽略不計(jì))正好落入孔中的概率是.故答案為:【點(diǎn)睛】本題考查了幾何概型計(jì)算公式,考查了數(shù)學(xué)運(yùn)算能力,屬于基礎(chǔ)題.14、【解析】由題意可得在R上單調(diào)遞增,再由,利用函數(shù)的單調(diào)性轉(zhuǎn)化為關(guān)于的不等式求解【詳解】定義在R上的函數(shù)的導(dǎo)函數(shù),在R上單調(diào)遞增,由,得,即實(shí)數(shù)的取值范圍為故答案為:15、【解析】先得出漸近線方程和圓的方程,然后解出點(diǎn)P的縱坐標(biāo),進(jìn)而求出面積.【詳解】由題意,漸近線方程為:,,圓的方程為:,聯(lián)立:,所以.故答案為:.16、【解析】由題得,解方程組即得解.【詳解】解:由題得,因?yàn)槭侵本€的一個(gè)方向向量,所以,所以,所以.故答案為:三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),(2),7【解析】(1)根據(jù)之間的遞推關(guān)系,可寫(xiě)出。,采用和相減得方法,可求得,由題意可推得為等差數(shù)列,利用等差數(shù)列的通項(xiàng)公式可求得答案;(2)寫(xiě)出的表達(dá)式,利用錯(cuò)位相減法可求得數(shù)列的前n項(xiàng)和,進(jìn)而利用數(shù)列的單調(diào)性求的最大整數(shù)n【小問(wèn)1詳解】∵,∴,則,∴,即,得又,∴,即,可得數(shù)列是以2為首項(xiàng),以2為公比的等比數(shù)列,則;∵點(diǎn)在直線上,∴,∴,即數(shù)列是等差數(shù)列,又,∴;【小問(wèn)2詳解】∵,∴,∴,∴,兩式相減可得:,∴,設(shè),則,故,是單調(diào)遞增的故當(dāng)時(shí),單調(diào)遞增的,當(dāng)時(shí),;當(dāng)時(shí),,故滿足的最大整數(shù)18、(1)(2)【解析】(1)解一元二次不等式,即可求得當(dāng)為真命題時(shí)的取值范圍;(2)先求得命題為真命題時(shí)的取值范圍.由為假命題,為真命題可知,兩命題一真一假.分類(lèi)討論,即可求得的取值范圍.【詳解】(1)當(dāng)為真命題時(shí),解不等式可得;(2)當(dāng)為真命題時(shí),由,可得,∵為假命題,為真命題,∴,兩命題一真一假,∴或,解得或,∴m的取值范圍是.【點(diǎn)睛】本題考查了根據(jù)命題真假求參數(shù)的取值范圍,由復(fù)合命題真假判斷命題真假,并求參數(shù)的取值范圍,屬于基礎(chǔ)題.19、(1)(2)【解析】(1)通過(guò)正弦定理將邊化為角的關(guān)系,可得,進(jìn)而可得結(jié)果;(2)由面積公式得,結(jié)合余弦定理得,進(jìn)而得結(jié)果.【小問(wèn)1詳解】∵∴由正弦定理,得∴∵,∴,故【小問(wèn)2詳解】由(1)知,∵∴∵由余弦定理知,∴,故∴,故∴的周長(zhǎng)為20、(1);(2)或或.【解析】(1)根據(jù)已知條件,求得的方程組,解得,即可求得橢圓的方程;(2)對(duì)的取值進(jìn)行分類(lèi)討論,當(dāng)時(shí),根據(jù)三點(diǎn)共線求得,聯(lián)立直線方程和橢圓方程,利用韋達(dá)定理,結(jié)合直線交橢圓兩點(diǎn),代值計(jì)算即可求得結(jié)果.【小問(wèn)1詳解】對(duì)橢圓,令,故可得,則,故,則,又,,故可得,則橢圓的方程為:.【小問(wèn)2詳解】直線與y軸交于點(diǎn)P,故可得的坐標(biāo)為,當(dāng)時(shí),則,由橢圓的對(duì)稱性可知:,故滿足題意;當(dāng)時(shí),因?yàn)槿c(diǎn)共線,若存在實(shí)數(shù),使得,即,則,故可得.又直線與橢圓交于兩點(diǎn),故聯(lián)立直線方程,與橢圓方程,可得:,則,即;設(shè)坐標(biāo)為,則,又,即,故可得:,即,也即,代入韋達(dá)定理整理得:,即,當(dāng)時(shí),上式不成立,故可得,又,則,整理得:,解得,即或.綜上所述:的取值范圍是或或.【點(diǎn)睛】本題考察橢圓方程的求解,以及橢圓中范圍問(wèn)題的處理;解決本題的關(guān)鍵一是要求得的取值,二是充分利用韋達(dá)定理以及直線和曲線相交,則聯(lián)立方程組后得到的一元二次方程的,屬綜合中檔題.21、(1)證明見(jiàn)解析;(2)【解析】(1)先證線面垂直,再證面面垂直即可解決;(2)建立空間直角坐標(biāo)系,以向量法去求平面與平面所成銳二面角的余弦值,列方程解得的長(zhǎng)度,即可求得三棱錐F-ABC的體積.【小問(wèn)1詳解】在梯形中,,,,所以,,又,所以,所以,又所以,即又平面,平面,所以,又,,平面,所以平面,即平面又平面,則平面平面【小問(wèn)2詳解】由(1)知,,兩兩垂直,以為坐標(biāo)原點(diǎn),分別以直線,,為軸、軸、軸建立空間直角坐標(biāo)系因?yàn)?,,所以,令則,,,所以,設(shè)為平面的一個(gè)法向量,由,得解得,取,則,又是平
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024高考地理一輪復(fù)習(xí)專練55可持續(xù)發(fā)展的內(nèi)涵和實(shí)現(xiàn)途徑含解析新人教版
- 外墻保溫營(yíng)造做法
- 《費(fèi)孝通-鄉(xiāng)土中國(guó)》差序格局
- 初三八班踐行弟子規(guī)主題班會(huì)課件
- 2024年海南軟件職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測(cè)驗(yàn)歷年參考題庫(kù)(頻考版)含答案解析
- 論交際性操練在漢語(yǔ)詞匯教學(xué)中的實(shí)際運(yùn)用
- 鈣鈦礦電池發(fā)展?jié)摿Ψ治鰣?bào)告
- 2024年浙江旅游職業(yè)學(xué)院高職單招語(yǔ)文歷年參考題庫(kù)含答案解析
- 2024年泉州華光職業(yè)學(xué)院高職單招語(yǔ)文歷年參考題庫(kù)含答案解析
- 2024年防城港市人民醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫(kù)頻考點(diǎn)附帶答案
- 2024年白山客運(yùn)資格證題庫(kù)
- 土地成片開(kāi)發(fā)運(yùn)營(yíng)模式與案例
- 快樂(lè)讀書(shū)吧:中國(guó)民間故事(專項(xiàng)訓(xùn)練)-2023-2024學(xué)年五年級(jí)語(yǔ)文上冊(cè)(統(tǒng)編版)
- 手術(shù)室新進(jìn)人員培訓(xùn)
- 成品油零售經(jīng)營(yíng)批準(zhǔn)證書(shū)變更、補(bǔ)辦、到期換證申請(qǐng)表
- 機(jī)動(dòng)車(chē)駕駛培訓(xùn)理論科目一考試題庫(kù)500題(含標(biāo)準(zhǔn)答案)
- 產(chǎn)品試驗(yàn)協(xié)議范本
- 職業(yè)技術(shù)學(xué)院《工程力學(xué)》課程標(biāo)準(zhǔn)
- 新高考6選3選科指導(dǎo)與生涯規(guī)劃課件
- 科技成果技術(shù)成熟度評(píng)估規(guī)范
- 冠狀動(dòng)脈微血管疾病診斷和治療中國(guó)專家共識(shí)(2023版)解讀
評(píng)論
0/150
提交評(píng)論