版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆貴陽市數(shù)學高二上期末質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.入冬以來,梁老師準備了4個不同的烤火爐,全部分發(fā)給樓的三個辦公室(每層樓各有一個辦公室).1,2樓的老師反映辦公室有點冷,所以1,2樓的每個辦公室至少需要1個烤火隊,3樓老師表示不要也可以.則梁老師共有多少種分發(fā)烤火爐的方法()A.108 B.36C.50 D.862.已知雙曲線:的左、右焦點分別為,,過點且斜率為的直線與雙曲線在第二象限的交點為,若,則雙曲線的離心率是()A B.C. D.3.已知正三棱柱的側棱長與底面邊長相等,則AB1與側面ACC1A1所成角的正弦值等于A. B.C. D.4.設等比數(shù)列的前項和為,若,則()A. B.C. D.5.已知梯形ABCD中,,,且對角線交于點E,過點E作與AB所在直線的平行線l.若AB和CD所在直線的方程分別是與,則直線l與CD所在直線的距離為()A.1 B.2C.3 D.46.如圖,在三棱錐中,,,,點在平面內,且,設異面直線與所成角為,則的最大值為()A. B.C. D.7.已知直線l1:y=x+2與l2:2ax+y﹣1=0垂直,則a=()A. B.C.﹣1 D.18.若動點在方程所表示的曲線上,則以下結論正確的是()①曲線關于原點成中心對稱圖形;②動點到坐標原點的距離的取值范圍為;③動點與點的最小距離為;④動點與點的連線斜率的取值范圍是.A.①② B.①②③C.③④ D.①②④9.甲、乙、丙、丁四位同學一起去找老師詢問成語競賽的成績.老師說:你們四人中有位優(yōu)秀,位良好,我現(xiàn)在給甲看乙、丙的成績,給乙看丙的成績,給丁看甲的成績.看后甲對大家說:我還是不知道我的成績.根據(jù)以上信息,則()A.乙、丁可以知道自己的成績 B.乙、丁可以知道對方的成績C.乙可以知道四人的成績 D.丁可以知道四人的成績10.傾斜角為120°,在x軸上截距為-1的直線方程是()A.x-y+1=0 B.x-y-=0C.x+y-=0 D.x+y+=011.過雙曲線-=1(a>0,b>0)的左焦點F(-c,0)作圓O:x2+y2=a2的切線,切點為E,延長FE交雙曲線于點P,若E為線段FP的中點,則雙曲線的離心率為()A. B.C.+1 D.12.已知拋物線的焦點坐標是,則拋物線的標準方程為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若曲線在點處的切線斜率為,則___________.14.若,則___15.已知兩平行直線與間的距離為3,則C的值是________.16.在數(shù)列中,,,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知命題:方程表示焦點在軸上的雙曲線,命題:關于的方程無實根(1)若命題為真命題,求實數(shù)的取值范圍;(2)若“”為假命題,"”為真命題,求實數(shù)的取值范圍18.(12分)已知數(shù)列的首項為,且滿足.(1)求證:數(shù)列為等比數(shù)列;(2)設,記數(shù)列的前項和為,求,并證明:.19.(12分)已知函數(shù),.(1)當時,求不等式的解集;(2)若在上恒成立,求取值范圍.20.(12分)已知三棱柱中,.(1)求證:平面平面.(2)若,在線段上是否存在一點使平面和平面所成角的余弦值為若存在,確定點的位置;若不存在,說明理由.21.(12分)已知公差不為零的等差數(shù)列的前項和為,,,成等比數(shù)列且滿足________.請在①;②;③,這三個條件中任選一個補充在上面題干中,并回答以下問題.(1)求數(shù)列的通項公式;(2)設,求數(shù)列的前項和.22.(10分)已知橢圓的左焦點為F,右頂點為,M是橢圓上一點.軸且(1)求橢圓C的標準方程;(2)直線與橢圓C交于E,H兩點,點G在橢圓C上,且四邊形平行四邊形(其中O為坐標原點),求
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】運用分類計數(shù)原理,結合組合數(shù)定義進行求解即可.【詳解】當3樓不要烤火爐時,不同的分發(fā)烤火爐的方法為:;當3樓需要1個烤火爐時,不同的分發(fā)烤火爐的方法為:;當3樓需要2個烤火爐時,不同的分發(fā)烤火爐的方法為:,所以分發(fā)烤火爐的方法總數(shù)為:,故選:C【點睛】關鍵點睛:運用分類計數(shù)原理是解題的關鍵.2、B【解析】根據(jù)得到三角形為等腰三角形,然后結合雙曲線的定義得到,設,進而作,得出,由此求出結果【詳解】因為,所以,即所以,由雙曲線的定義,知,設,則,易得,如圖,作,為垂足,則,所以,即,即雙曲線的離心率為.故選:B3、C【解析】過作,連接,由于,故平面,所以所求直線與平面所成的角為,設棱長為,則,故,.點睛:本題主要考查空間立體幾何直線與平面的位置關系,考查直線與平面所成的角,考查線面垂直的證明方法和常見幾何體的結構特征.由于題目所給幾何體為直三棱柱,故側棱和底面垂直,這是一個重要的隱含條件,通過作交線的垂線,即可得到高,由此作出二面角的平面角.4、C【解析】利用等比數(shù)列前項和的性質,,,,成等比數(shù)列求解.【詳解】解:因為數(shù)列為等比數(shù)列,則,,成等比數(shù)列,設,則,則,故,所以,得到,所以.故選:C.5、B【解析】先求得直線AB和CD之間的距離,再求直線l與CD所在直線的距離即可解決.【詳解】梯形ABCD中,,,且對角線交于點E,則有△與△相似,相似比為,則,點E到CD所在直線的距離為AB和CD所在直線距離的又AB和CD所在直線的距離為,則直線l與CD所在直線的距離為2故選:B6、D【解析】設線段的中點為,連接,過點在平面內作,垂足為點,證明出平面,然后以點為坐標原點,、、分別為、、軸的正方向建立空間直角坐標系,設,其中,且,求出的最大值,利用空間向量法可求得的最大值.【詳解】設線段的中點為,連接,,為的中點,則,,則,,同理可得,,,平面,過點在平面內作,垂足為點,因為,所以,為等邊三角形,故為的中點,平面,平面,則,,,平面,以點為坐標原點,、、分別為、、軸的正方向建立如下圖所示的空間直角坐標系,因為是邊長為的等邊三角形,為的中點,則,則、、、,由于點在平面內,可設,其中,且,從而,因為,則,所以,,故當時,有最大值,即,故,即有最大值,所以,.故選:D.【點睛】方法點睛:求空間角的常用方法:(1)定義法:由異面直線所成角、線面角、二面角的定義,結合圖形,作出所求空間角,再結合題中條件,解對應的三角形,即可求出結果;(2)向量法:建立適當?shù)目臻g直角坐標系,通過計算向量的夾角(兩直線的方向向量、直線的方向向量與平面的法向量、兩平面的法向量)的余弦值,即可求得結果.7、A【解析】利用兩直線垂直斜率關系,即可求解.【詳解】直線l1:y=x+2與l2:2ax+y﹣1=0垂直,.故選:A【點睛】本題考查兩直線垂直間的關系,屬于基礎題.8、A【解析】將原方程等價變形為,將方程中的換為,換為,方程不變,可判斷①;利用兩點間的距離公式,結合二次函數(shù)知識可判斷②和③;取特殊點可判斷④.【詳解】因為等價于,即,對于①,將方程中的換為,換為,方程不變,所以曲線關于原點成中心對稱圖形,故①正確;對于②,設,則動點到坐標原點的距離,因為,所以,故②正確;對于③,設,動點與點的距離為,因為函數(shù)在上遞減,所以當時,函數(shù)取得最小值,從而取得最小值,故③不正確;對于④,當時,因為,所以,故④不正確.綜上所述:結論正確的是:①②.故選:A9、A【解析】分析可知乙、丙的成績中必有位優(yōu)秀、位良好,結合題意進行推導,可得出結論.【詳解】由于個人中的成績中有位優(yōu)秀,位良好,甲知道乙、丙的成績,還是不知道自己的成績,則乙、丙的成績必有位優(yōu)秀、位良好,甲、丁的成績中必有位優(yōu)秀、位良好,因為給乙看丙的成績,則乙必然知道自己的成績,丁知道甲的成績后,必然知道自己的成績.故選:A.10、D【解析】由傾斜角求出斜率,寫出斜截式方程,再化為一般式【詳解】由于傾斜角為120°,故斜率k=-.又直線過點(-1,0),所以方程為y=-(x+1),即x+y+=0.故選:D.【點睛】本題考查直線方程的斜截式,屬于基礎題11、A【解析】設F′為雙曲線的右焦點,連接OE,PF′,根據(jù)圓的切線性質和三角形中位線得到|OE|=a,|PF′|=2a,利用雙曲線的定義求得|PF|=4a,得到|EF|=2a,在Rt△OEF中,利用勾股定理建立關系即可求得離心率的值.【詳解】不妨設E在x軸上方,F(xiàn)′為雙曲線的右焦點,連接OE,PF′,如圖所示:因為PF是圓O的切線,所以OE⊥PE,又E,O分別為PF,F(xiàn)F′的中點,所以|OE|=|PF′|,又|OE|=a,所以|PF′|=2a,根據(jù)雙曲線的定義,|PF|-|PF′|=2a,所以|PF|=4a,所以|EF|=2a,在Rt△OEF中,|OE|2+|EF|2=|OF|2,即a2+4a2=c2,所以e=,故選A.【點睛】本題考查雙曲線的離心率的求法,聯(lián)想到雙曲線的另一個焦點,作輔助線,利用雙曲線的定義是求解離心率問題的有效方法.12、D【解析】根據(jù)拋物線的焦點坐標得到2p=4,進而得到方程.【詳解】拋物線的焦點坐標是,即p=2,2p=4,故得到方程為.故答案為D.【點睛】這個題目考查了拋物線的標準方程的求法,題目較為簡單.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由導數(shù)的幾何意義求解即可【詳解】,,解得.故答案為:114、##0.5【解析】導數(shù)的定義公式的變形應用,要求分子分母的變化量相同.【詳解】故答案為:.15、【解析】根據(jù)兩條平行直線之間的距離公式即可得解.【詳解】兩平行直線與間的距離為3,所以,所以故答案為:16、##.【解析】由遞推關系取可求,再取求,取求.詳解】由分別取,2,3可得,,,又,∴,,,故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由雙曲線標準方程的性質得,即可求m的范圍;(2)當q命題為真時,方程無實根,判別式小于零,求得m的范圍,再由復合命題的真假得和一真一假,列出不等式組運算可得解【小問1詳解】∵方程表示焦點在軸上的雙曲線,∴,解得【小問2詳解】若為真命題,則,解得,∵“”為假命題,”為真命題,∴一真一假當真假時,“”且“或”,則;當假真時,,則綜上所述,實數(shù)的取值范圍是18、(1)證明見解析(2),證明見解析【解析】(1)根據(jù)等比數(shù)列的定義證明;(2)由錯位相減法求得和,再由的單調性可證得不等式成立【小問1詳解】由得又,數(shù)列是以為首項,以為公比的等比數(shù)列.【小問2詳解】由(1)的結論有①②①②得:又為遞增數(shù)列,19、(1)或;(2).【解析】(1)解不含參數(shù)的一元二次不等式即可求出結果;(2)二次函數(shù)的恒成立問題需要對二次項系數(shù)是否為0進行分類討論,即可求出結果.【詳解】(1)當時,,即,解得或,所以,解集為或.(2)因為在上恒成立,①當時,恒成立;②當時,,解得,綜上,的取值范圍為.20、(1)證明見解析;(2)在線段上存在一點,且P是靠近C的四等分點.【解析】(1)連接,根據(jù)給定條件證明平面得即可推理作答.(2)在平面內過C作,再以C為原點,射線CA,CB,Cz分別為x,y,z軸正半軸建立空間直角坐標系,利用空間向量計算判斷作答.【小問1詳解】在三棱柱中,四邊形是平行四邊形,而,則是菱形,連接,如圖,則有,因,,平面,于是得平面,而平面,則,由得,,平面,從而得平面,又平面,所以平面平面.【小問2詳解】在平面內過C作,由(1)知平面平面,平面平面,則平面,以C為原點,射線CA,CB,Cz分別為x,y,z軸正半軸建立空間直角坐標系,如圖,因,,則,假設在線段上存在符合要求的點P,設其坐標為,則有,設平面的一個法向量,則有,令得,而平面的一個法向量,依題意,,化簡整理得:而,解得,所以在線段上存在一點,且P是靠近C的四等分點,使平面和平面所成角的余弦值為.21、(1)答案見解析(2)【解析】(1)首先由,,成等比數(shù)列,求出,再由①或②或③求出數(shù)列的首項和公差,即可求得的通項公式;(2)求得的通項公式,結合裂項相消法求得.【小問1詳解】設等差數(shù)列的公差為,由,,成等比數(shù)列,可得,即,∵,故,選①:由,可得,解
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國消防救援學院《城市土地管理》2023-2024學年第一學期期末試卷
- 鄭州體育職業(yè)學院《電動汽車原理與設計》2023-2024學年第一學期期末試卷
- 長春人文學院《西方政治思想史汪聶才》2023-2024學年第一學期期末試卷
- 浙江工貿(mào)職業(yè)技術學院《C程序設計》2023-2024學年第一學期期末試卷
- 食品衛(wèi)生檢測技術的發(fā)展
- 策劃感恩節(jié)新媒體活動模板
- 清明文化在媒體傳播中的挖掘模板
- 元旦跨年夜祝福語
- 統(tǒng)編版五年級語文上冊寒假作業(yè)(一)(有答案)
- 徐州幼兒師范高等??茖W?!秳?chuàng)業(yè)基礎實踐》2023-2024學年第一學期期末試卷
- 2024年浙江杭州師范大學附屬醫(yī)院招聘筆試真題
- 學校自習室管理及收費方案
- 2025年護理部護士理論培訓計劃
- 環(huán)保管家管家式管家式一站式服務合同
- 醫(yī)療廢物污水培訓
- 2024年山東省高考政治試卷真題(含答案逐題解析)
- 《用銳角三角函數(shù)解決問題(3)》參考課件
- 房地產(chǎn)營銷策劃 -佛山龍灣壹號學區(qū)房項目推廣策略提案方案
- 產(chǎn)品共同研發(fā)合作協(xié)議范本5篇
- 風水學的基礎知識培訓
- 2024年6月高考地理真題完全解讀(安徽?。?/a>
評論
0/150
提交評論