四川省德陽市2025屆高二上數(shù)學期末檢測試題含解析_第1頁
四川省德陽市2025屆高二上數(shù)學期末檢測試題含解析_第2頁
四川省德陽市2025屆高二上數(shù)學期末檢測試題含解析_第3頁
四川省德陽市2025屆高二上數(shù)學期末檢測試題含解析_第4頁
四川省德陽市2025屆高二上數(shù)學期末檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

四川省德陽市2025屆高二上數(shù)學期末檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線(,)的一條漸近線的傾斜角為,則離心率為()A. B.C.2 D.42.若定義在R上的函數(shù)的圖象如圖所示,為函數(shù)的導函數(shù),則不等式的解集為()A. B.C. D.3.已知橢圓的離心率為.雙曲線的漸近線與橢圓有四個交點,以這四個焦點為頂點的四邊形的面積為16,則橢圓的方程為A. B.C. D.4.設,是雙曲線()的左、右焦點,是坐標原點.過作的一條漸近線的垂線,垂足為.若,則的離心率為A. B.C. D.5.過點且與拋物線只有一個公共點的直線有()A.1條 B.2條C.3條 D.0條6.已知拋物線上一點到焦點的距離為3,準線為l,若l與雙曲線的兩條漸近線所圍成的三角形面積為,則雙曲線C的離心率為()A.3 B.C. D.7.橢圓的離心率為()A. B.C. D.8.若點在橢圓上,則該橢圓的離心率為()A. B.C. D.9.已知數(shù)列的前項和,且,則()A. B.C. D.10.在數(shù)列中,若,則稱為“等方差數(shù)列”,下列對“等方差數(shù)列”的判斷,其中不正確的為()A.若是等方差數(shù)列,則是等差數(shù)列 B.若是等方差數(shù)列,則是等方差數(shù)列C.是等方差數(shù)列 D.若是等方差數(shù)列,則是等方差數(shù)列11.設點是點,,關(guān)于平面的對稱點,則()A.10 B.C. D.3812.“”是“”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.矩形ABCD中,,在CD邊上任取一點M,則的最大邊是AB的概率為______14.已知曲線在處的切線方程為,則________15.數(shù)列滿足前項和,則數(shù)列的通項公式為_____________16.某校開展“讀書月”朗誦比賽,9位評委為選手A給出的分數(shù)如右邊莖葉圖所示.記分員在去掉一個最高分和一個最低分后算得平均分為91,復核員在復核時發(fā)現(xiàn)有一個數(shù)字(莖葉圖中的x)無法看清,若記分員計算無誤,則數(shù)字x應該是___________.選手A87899924x15三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線與橢圓有公共焦點,且它的一條漸近線方程為.(1)求橢圓的焦點坐標;(2)求雙曲線的標準方程18.(12分)設p:關(guān)于x的不等式有解,q:.(1)若p為真命題,求實數(shù)m的取值范圍;(2)若為假命題,為真命題,求實數(shù)m的取值范圍.19.(12分)已知數(shù)列的首項,其前n項和為,且滿足.(1)求數(shù)列的通項公式;(2)設,數(shù)列的前n項和為,且,求n.20.(12分)已知向量,.(1)計算和;(2)求.21.(12分)在平面直角坐標系xOy中,已知橢圓E:(a>b>0)的左、右焦點分別為F1,F(xiàn)2,離心率為.點P是橢圓上的一動點,且P在第一象限.記的面積為S,當時,.(1)求橢圓E的標準方程;(2)如圖,PF1,PF2的延長線分別交橢圓于點M,N,記和的面積分別為S1和S2.(i)求證:存在常數(shù)λ,使得成立;(ii)求S2-S1的最大值.22.(10分)已知函數(shù)(a為非零常數(shù))(1)若f(x)在處的切線經(jīng)過點(2,ln2),求實數(shù)a的值;(2)有兩個極值點,.①求實數(shù)a的取值范圍;②若,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)雙曲線方程寫出漸近線方程,得出,進而可求出雙曲線的離心率.【詳解】因為雙曲線的漸近線方程為,又其中一條漸近線的傾斜角為,所以,則,所以該雙曲線離心率為.故選:C.2、A【解析】由函數(shù)單調(diào)性得出和的解,然后分類討論解不等式可得【詳解】由圖象可知:在為正,在為負,,可化為:或,解得或故選:A3、D【解析】由題意,雙曲線的漸近線方程為,∵以這四個交點為頂點的四邊形為正方形,其面積為16,故邊長為4,∴(2,2)在橢圓C:上,∴,∵,∴,∴,∴∴橢圓方程為:.故選D.考點:橢圓的標準方程及幾何性質(zhì);雙曲線的幾何性質(zhì).4、B【解析】分析:由雙曲線性質(zhì)得到,然后在和在中利用余弦定理可得詳解:由題可知在中,在中,故選B.點睛:本題主要考查雙曲線的相關(guān)知識,考查了雙曲線的離心率和余弦定理的應用,屬于中檔題5、B【解析】過的直線的斜率存在和不存在兩種情況分別討論即可得出答案.【詳解】易知過點,且斜率不存在的直線為,滿足與拋物線只有一個公共點.當直線的斜率存在時,設直線方程為,與聯(lián)立得,當時,方程有一個解,即直線與擾物線只有一個公共點.故滿足題意的直線有2條.故選:B6、C【解析】先由已知結(jié)合拋物線的定義求出,從而可得拋物線的準線方程,則可求出準線l與兩條漸近線的交點分別為,然后由題意可得,進而可求出雙曲線的離心率詳解】依題意,拋物線準線,由拋物線定義知,解得,則準線,雙曲線C的兩條漸近線為,于是得準線l與兩條漸近線的交點分別為,原點為O,則面積,雙曲線C的半焦距為c,離心率為e,則有,解得故選:C7、A【解析】由橢圓標準方程求得,再計算出后可得離心率【詳解】在橢圓中,,,,因此,該橢圓的離心率為.故選:A.【點睛】本題考查求橢圓的離心率,根據(jù)橢圓標準方程求出即可8、C【解析】根據(jù)給定條件求出即可計算橢圓的離心率.【詳解】因點在橢圓,則,解得,而橢圓長半軸長,所以橢圓離心率.故選:C9、C【解析】由an=Sn-Sn-1,【詳解】解:因為,所以,,兩式相減可得,即,因為,,所以,即,時,也滿足上式,所以,所以,故選:C.10、B【解析】根據(jù)等方差數(shù)列的定義逐一進行判斷即可【詳解】選項A中,符合等差數(shù)列的定義,所以是等差數(shù)列,A正確;選項B中,不是常數(shù),所以不是等方差數(shù)列,選項B錯誤;選項C中,,所以是等方差數(shù)列,C正確;選項D中,所以是等方差數(shù)列,D正確故選:B11、A【解析】寫出點坐標,由對稱性易得線段長【詳解】點是點,,關(guān)于平面的對稱點,的橫標和縱標與相同,而豎標與相反,,,,直線與軸平行,,故選:A12、B【解析】因但二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先利用勾股定理得出滿足條件的長度,再結(jié)合幾何概型的概率公式得出答案.【詳解】設,當時,,;當時,,所以當?shù)降木嚯x都大于時,的最大邊是AB,所以的最大邊是AB的概率為.故答案為:14、1【解析】先求導,由,代入即得解【詳解】由題意,故答案為:115、【解析】由已知中前項和,結(jié)合,分別討論時與時的通項公式,并由時,的值不滿足時的通項公式,故要將數(shù)列的通項公式寫成分段函數(shù)的形式【詳解】∵數(shù)列前項和,∴當時,,又∵當時,,故,故答案為.【點睛】本題考查的知識點是等差數(shù)列的通項公式,其中正確理解由數(shù)列的前n項和Sn,求通項公式的方法和步驟是解答本題的關(guān)鍵16、4【解析】根據(jù)題意分和兩種情況討論,再根據(jù)平均分公式計算即可得出答案.【詳解】解:當時,則去掉的最低分數(shù)為87分,最高分數(shù)為95分,則,所以,當時,則去掉的最低分數(shù)為87分,最高分數(shù)為分,則平均分為,與題意矛盾,綜上.故答案為:4.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)由橢圓方程及其參數(shù)關(guān)系求出參數(shù)c,即可得焦點坐標.(2)由漸近線及焦點坐標,可設雙曲線方程為,再由雙曲線參數(shù)關(guān)系求出參數(shù),即可得雙曲線標準方程.【小問1詳解】由題設,,又,所以橢圓的焦點坐標為.【小問2詳解】由題設,令雙曲線為,由(1)知:,可得,所以雙曲線的標準方程為.18、(1)(2)【解析】根據(jù)題意,解出p和q里面m的范圍即可求解﹒其中有解,則≥0﹒【小問1詳解】p為真命題時,,解得,所以m的取值范圍是;【小問2詳解】q為真命題時,即,解得,所以q為假命題時,或,由(1)知,p為假時,因為為假命題,為真命題,所以p,q為一真一假,當p真q假時,且“或”,解得;當p假q真時,,解得;綜上:m的取值范圍是19、(1)(2)【解析】(1)由條件得,則利用等差數(shù)列的定義可得答案;(2)利用裂項求和求出,再根據(jù)可求出n.【小問1詳解】由得,從而數(shù)列是以1為首項,1為公差的等差數(shù)列,所以;【小問2詳解】由(1)得,由得又,所以.20、(1),;(2).【解析】(1)利用空間向量的坐標運算可求得的坐標,利用向量的模長公式可求得的值;(2)計算出,結(jié)合的取值范圍可求得結(jié)果.【詳解】(1),;(2),,因此,.【點睛】本題考查空間向量的坐標運算,同時也考查了利用空間向量的數(shù)量積計算向量的夾角,考查計算能力,屬于基礎題.21、(1)(2)(i)存在常數(shù),使得成立;(ii)的最大值為.【解析】(1)求點P的坐標,再利用面積和離心率,可以求出,然后就可以得到橢圓的標準方程;(2)設點的坐標和直線方程,聯(lián)立方程,解出的y坐標值與P的坐標之間的關(guān)系,求以焦距為底邊的三角形面積;利用均值定理當且僅當時取等號,求最大值.【小問1詳解】先求第一象限P點坐標:,所以P點的坐標為,所以,所以橢圓E的方程為【小問2詳解】設,易知直線和直線的坐標均不為零,因為,所以設直線的方程為,直線的方程為,由所以,因為,,所以所以同理由所以,因為,,所以所以,因為,,(i)所以所以存在常數(shù),使得成立.(ii),當且僅當,時取等號,所以的最大值為.22、(1)(2)①(0,1);②證明見解析【解析】小問1先求出切線方程,再將點(2,ln2),代入即可求出a的值;小問2的①通過求導,再結(jié)合函數(shù)的單調(diào)性求出a的取值范圍;②結(jié)合已知條件,構(gòu)造新函數(shù)即可得到證明.【小問1詳解】,∴切線方程為,將點代入解得:【小問2詳解】①當時,即時,,f(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論