2025屆白銀市重點中學(xué)數(shù)學(xué)高二上期末綜合測試試題含解析_第1頁
2025屆白銀市重點中學(xué)數(shù)學(xué)高二上期末綜合測試試題含解析_第2頁
2025屆白銀市重點中學(xué)數(shù)學(xué)高二上期末綜合測試試題含解析_第3頁
2025屆白銀市重點中學(xué)數(shù)學(xué)高二上期末綜合測試試題含解析_第4頁
2025屆白銀市重點中學(xué)數(shù)學(xué)高二上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆白銀市重點中學(xué)數(shù)學(xué)高二上期末綜合測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若關(guān)于一元二次不等式的解集為,則實數(shù)的取值范圍是()A. B.C. D.2.若、且,則下列式子一定成立的是()A. B.C. D.3.兩個圓和的位置是關(guān)系是()A.相離 B.外切C.相交 D.內(nèi)含4.?dāng)?shù)列,,,,…的一個通項公式為()A. B.C. D.5.已知雙曲線,過點作直線l與雙曲線交于A,B兩點,則能使點P為線段AB中點的直線l的條數(shù)為()A.0 B.1C.2 D.36.已知點為雙曲線的左頂點,點和點在雙曲線的右分支上,是等邊三角形,則的面積是A. B.C. D.7.在平面直角坐標(biāo)系中,雙曲線C:的左焦點為F,過F且與x軸垂直的直線與C交于A,B兩點,若是正三角形,則C的離心率為()A. B.C. D.8.《周髀算經(jīng)》中有這樣一個問題,從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣日影長依次成等差數(shù)列,若冬至、大寒、雨水的日影長的和為36.3尺,小寒、驚蟄、立夏的日影長的和為18.3尺,則冬至的日影長為()A4尺 B.8.5尺C.16.1尺 D.18.1尺9.已知點是橢圓上的任意一點,過點作圓:的切線,設(shè)其中一個切點為,則的取值范圍為()A. B.C. D.10.下列說法:①將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變;②從統(tǒng)計量中得知有的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有的可能性使得推斷出現(xiàn)錯誤;③回歸直線就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線;④如果兩個變量的線性相關(guān)程度越高,則線性相關(guān)系數(shù)就越接近于;其中錯誤說法的個數(shù)是()A. B.C. D.11.已知M、N為橢圓上關(guān)于短軸對稱的兩點,A、B分別為橢圓的上下頂點,設(shè)、分別為直線的斜率,則的最小值為()A. B.C. D.12.已知命題,,則p的否定是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知方程,若此方程表示橢圓,則實數(shù)的取值范圍是________;若此方程表示雙曲線,則實數(shù)的取值范圍是________.14.已知斜率為的直線與橢圓相交于不同的兩點A,B,M為y軸上一點且滿足|MA|=|MB|,則點M的縱坐標(biāo)的取值范圍是___________.15.若命題“”是假命題,則a的取值范圍是_______.16.雙曲線的左頂點為,虛軸的一個端點為,右焦點到直線的距離為,則雙曲線的離心率為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某地區(qū)2021年清明節(jié)前后3天每天下雨的概率為50%,通過模擬實驗的方法來計算該地區(qū)這3天中恰好有2天下雨的概率.用隨機(jī)數(shù)x(,且)表示是否下雨:當(dāng)時表示該地區(qū)下雨,當(dāng)時,表示該地區(qū)不下雨,從隨機(jī)數(shù)表中隨機(jī)取得20組數(shù)如下:332714740945593468491272073445992772951431169332435027898719(1)求出m的值,并根據(jù)上述數(shù)表求出該地區(qū)清明節(jié)前后3天中恰好有2天下雨的概率;(2)從2012年到2020年該地區(qū)清明節(jié)當(dāng)天降雨量(單位:)如表:(其中降雨量為0表示沒有下雨).時間2012年2013年2014年2015年2016年2017年2018年2019年2020年年份t123456789降雨量y292826272523242221經(jīng)研究表明:從2012年至2021年,該地區(qū)清明節(jié)有降雨的年份的降雨量y與年份t成線性回歸,求回歸直線方程,并計算如果該地區(qū)2021年()清明節(jié)有降雨的話,降雨量為多少?(精確到0.01)參考公式:,參考數(shù)據(jù):,,,18.(12分)已知E,F(xiàn)分別是正方體的棱BC和CD的中點(1)求與所成角的大?。唬?)求與平面所成角的余弦值19.(12分)已知橢圓的一個頂點為,離心率為(1)求橢圓C的方程;(2)若直線l與橢圓C交于M、N兩點,直線BM與直線BN的斜率之積為,證明直線l過定點并求出該定點坐標(biāo)20.(12分)已知函數(shù),當(dāng)時,函數(shù)有極值1.(1)求函數(shù)的解析式;(2)若關(guān)于x的方程有一個實數(shù)根,求實數(shù)m的取值范圍.21.(12分)在中,角、、所對的邊分別為、、,且(1)求證;、、成等差數(shù)列;(2)若,的面積為,求的周長22.(10分)已知動圓過定點,且與直線相切,圓心的軌跡為(1)求動點的軌跡方程;(2)已知直線交軌跡于兩點,,且中點的縱坐標(biāo)為,則的最大值為多少?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】結(jié)合判別式求得的取值范圍.【詳解】由于關(guān)于的一元二次不等式的解集為,所以,解得,所以實數(shù)的取值范圍是.故選:B2、B【解析】構(gòu)造函數(shù),利用函數(shù)在上的單調(diào)性可判斷AB選項;構(gòu)造函數(shù),利用函數(shù)在上的單調(diào)性可判斷CD選項.【詳解】對于AB選項,構(gòu)造函數(shù),其中,則,所以,函數(shù)在上單調(diào)遞增,因為、且,則,即,A錯B對;對于CD選項,構(gòu)造函數(shù),其中,則.當(dāng)時,,此時函數(shù)單調(diào)遞減,當(dāng)時,,此時函數(shù)單調(diào)遞增,故函數(shù)在上不單調(diào),無法確定與的大小關(guān)系,故CD都錯.故選:B.3、C【解析】根據(jù)圓的方程得出兩圓的圓心和半徑,再得出圓心距離與兩圓的半徑的關(guān)系,可得選項.【詳解】圓的圓心為,半徑,的圓心為,半徑,則,所以兩圓的位置是關(guān)系是相交,故選:C.【點睛】本題考查兩圓的位置關(guān)系,關(guān)鍵在于運(yùn)用判定兩圓的位置關(guān)系一般利用幾何法.即比較圓心之間的距離與半徑之和、之差的大小關(guān)系,屬于基礎(chǔ)題.4、B【解析】根據(jù)給定數(shù)列,結(jié)合選項提供通項公式,將n代入驗證法判斷是否為通項公式.【詳解】A:時,排除;B:數(shù)列,,,,…滿足.C:時,排除;D:時,排除;故選:B5、A【解析】先假設(shè)存在這樣的直線,分斜率存在和斜率不存在設(shè)出直線的方程,當(dāng)斜率k存在時,與雙曲線方程聯(lián)立,消去,得到關(guān)于的一元二次方程,直線與雙曲線相交于兩個不同點,則,,又根據(jù)是線段的中點,則,由此求出與矛盾,故不存在這樣的直線滿足題意;當(dāng)斜率不存在時,過點的直線不滿足條件,故符合條件的直線不存在.詳解】設(shè)過點的直線方程為或,①當(dāng)斜率存在時有,得(*)當(dāng)直線與雙曲線相交于兩個不同點,則必有:,即又方程(*)的兩個不同的根是兩交點、的橫坐標(biāo),又為線段的中點,,即,,使但使,因此當(dāng)時,方程①無實數(shù)解故過點與雙曲線交于兩點、且為線段中點的直線不存在②當(dāng)時,經(jīng)過點的直線不滿足條件.綜上,符合條件的直線不存在故選:A6、C【解析】設(shè)點在軸上方,由是等邊三角形得直線斜率.又直線過點,故方程為.代入雙曲線方程,得點的坐標(biāo)為.同理可得,點的坐標(biāo)為.故的面積為,選C.7、A【解析】設(shè)雙曲線半焦距為c,求出,由給定的正三角形建立等量關(guān)系,結(jié)合計算作答.【詳解】設(shè)雙曲線半焦距為c,則,而軸,由得,從而有,而是正三角形,即有,則,整理得,因此有,而,解得,所以C的離心率為.故選:A8、C【解析】設(shè)等差數(shù)列,用基本量代換列方程組,即可求解.【詳解】由題意,從冬至之日起,小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種這十二個節(jié)氣的日影長依次成等差數(shù)列,記為數(shù)列,公差為d,則有,即,解得:,即冬至的日影長為16.1尺.故選:C9、B【解析】設(shè),得到,利用橢圓的范圍求解.【詳解】解:設(shè),則,,,因為,所以,即,故選:B10、C【解析】根據(jù)統(tǒng)計的概念逐一判斷即可.【詳解】對于①,方差反映一組數(shù)據(jù)的波動大小,將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上或減去同一個常數(shù)后,方差不變,①正確;對于②從統(tǒng)計量中得知有的把握認(rèn)為吸煙與患肺病有關(guān)系,是指有的可能性使得推斷出現(xiàn)錯誤;故②正確;對于③,線性回歸方程必過樣本中心點,回歸直線不一定就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線,也可能不過任何一個點;③不正確;對于④,如果兩個變量的線性相關(guān)程度越高,則線性相關(guān)系數(shù)就越接近于,不正確,應(yīng)為相關(guān)系數(shù)的絕對值就越接近于;綜上,其中錯誤的個數(shù)是;故選:C.11、A【解析】利用為定值即可獲解.【詳解】設(shè)則又,所以所以當(dāng)且僅當(dāng),即,取等故選:A12、A【解析】直接根據(jù)全稱命題的否定寫出結(jié)論.【詳解】命題,為全稱命題,故p的否定是:.故選:A【點睛】全稱量詞命題的否定是特稱(存在)量詞命題,特稱(存在)量詞命題的否定是全稱量詞命題二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】分別根據(jù)橢圓、雙曲線的標(biāo)準(zhǔn)方程的特征建立不等式即可求解.【詳解】當(dāng)方程表示橢圓時,則有且,所以的取值范圍是;當(dāng)方程表示雙曲線時,則有或,所以的取值范圍是.故答案為:;14、【解析】設(shè)直線的方程為,由消去并化簡得,設(shè),,,解得..由于,所以是垂直平分線與軸的交點,垂直平分線方程為,令得,由于,所以.也即的縱坐標(biāo)的取值范圍是.故答案為:15、【解析】依題意可得是真命題,參變分離得到,再利用基本不等式計算可得;【詳解】解:因為命題“”是假命題,所以命題“”是真命題,即,所以,因為,當(dāng)且僅當(dāng)即時取等號,所以,即故答案:16、【解析】根據(jù)雙曲線左頂點和虛軸端點的定義,結(jié)合點到直線距離公式、雙曲線的離心率公式進(jìn)行求解即可.【詳解】不妨設(shè)在縱軸的正半軸上,由雙曲線的標(biāo)準(zhǔn)方程可知:,右焦點的坐標(biāo)為,直線的方程為:,因為右焦點到直線的距離為,所以有,即雙曲線的離心率為,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2);該地區(qū)2020年清明節(jié)有降雨的話,降雨量為20.2mm【解析】(1)利用概率模擬求概率;(2)套用公式求回歸直線方程即可.【詳解】解:(1)由題意可知,,解得,即表示下雨,表示不下雨,所給的20組數(shù)據(jù)中714,740,491,272,073,445,435,027,共8組表示3天中恰有兩天下雨,故所求的概率為;(2)由題中所給的數(shù)據(jù)可得,,所以,,所以回歸方程為,當(dāng)時,,所以該地區(qū)2020年清明節(jié)有降雨的話,降雨量為20.2mm【點睛】求線性回歸方程的步驟:①求出;②套公式求出;③寫出回歸方程;④利用回歸方程進(jìn)行預(yù)報;18、(1)60°;(2).【解析】(1)建立空間直角坐標(biāo)系,利用空間向量夾角的坐標(biāo)公式即可求出異面直線所成角的余弦值,進(jìn)而結(jié)合異面直線成角的范圍即可求出結(jié)果;(2)建立空間直角坐標(biāo)系,利用空間向量夾角的坐標(biāo)公式即可求出求出線面角的正弦值,進(jìn)而結(jié)合線面角的范圍即可求出結(jié)果;【小問1詳解】以AB,AD,所在直線分別為x,y,z軸建立如圖所示的空間直角坐標(biāo)系,設(shè)正方體的棱長為,則,,,,所以,,設(shè)與EF所成角的大小為,則,因為異面直線成角的范圍是,所以與所成角的大小為60°【小問2詳解】設(shè)平面的法向量為,與平面所成角為,因為,,所以,,所以,令,得為平面的一個法向量,又因為,所以,所以19、(1);(2)答案見解析,直線過定點.【解析】(1)首先根據(jù)頂點為得到,再根據(jù)離心率為得到,從而得到橢圓C的方程.(2)設(shè),,,與橢圓聯(lián)立得到,利用直線BM與直線BN的斜率之積為和根系關(guān)系得到,從而得到直線恒過的定點.【詳解】(1)一個頂點為,故,又,即,所以故橢圓的方程為(2)若直線l的斜率不存在,設(shè),,此時,與題設(shè)矛盾,故直線l斜率必存在設(shè),,,聯(lián)立得,∴,∵,即∴,化為,解得或(舍去),即直線過定點【點睛】方法點睛:定點問題,一般從三個方法把握:(1)從特殊情況開始,求出定點,再證明定點、定值與變量無關(guān);(2)直接推理,計算,在整個過程找到參數(shù)之間的關(guān)系,代入直線,得到定點.20、(1)(2)【解析】(1)根據(jù),可得可得結(jié)果.(2)根據(jù)等價轉(zhuǎn)換的思想,可得,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,并比較的極值與的大小關(guān)系,可得結(jié)果.【詳解】(1)由,有,又有,解得:,,故函數(shù)的解析式為(2)由(1)有可知:故函數(shù)的增區(qū)間為,,減區(qū)間為,所以的極小值為,極大值為由關(guān)于x的方程有一個實數(shù)根,等價于方程有一個實數(shù)根,即等價于函數(shù)的圖像只有一個交點實數(shù)m的取值范圍為【點睛】本題考查根據(jù)極值求函數(shù)的解析式,還考查了方程的根與函數(shù)圖像交點的等價轉(zhuǎn)換,屬基礎(chǔ)題.21、(1)證明見解析(2)【解析】(1)利用正弦定理結(jié)合兩角和的正弦公式求出的值,結(jié)合角的取值范圍可求得角的值,可求得的值,即可證得結(jié)論成立;(2)利用三角形的面積公式可求得的值,結(jié)合余弦定理可求得的值,進(jìn)而可求得的周長.【小問1詳解】證明:由正弦定理及,得,所以,,所以,,,則,所以,,又,,,因此,、、成等差數(shù)列.【小問2詳解】解:,,又,,故的周長為.22、(1)(2)【解析】(1)利用拋物線的定義直接可得軌跡方程;(2)設(shè)直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論