版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆天津市天津一中高二數(shù)學(xué)第一學(xué)期期末預(yù)測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等比數(shù)列中,,,則首項()A. B.C. D.02.已知橢圓的離心率為,則()A. B.C. D.3.若直線與平行,則實數(shù)m等于()A.0 B.1C.4 D.0或44.已知點(diǎn)P是圓上一點(diǎn),則點(diǎn)P到直線的距離的最大值為()A.2 B.C. D.5.阿波羅尼斯約公元前年證明過這樣一個命題:平面內(nèi)到兩定點(diǎn)距離之比為常數(shù)且的點(diǎn)的軌跡是圓.后人將這個圓稱為阿氏圓.若平面內(nèi)兩定點(diǎn)A,B間的距離為2,動點(diǎn)P與A,B距離之比滿足:,當(dāng)P、A、B三點(diǎn)不共線時,面積的最大值是()A. B.2C. D.6.已知隨機(jī)變量服從正態(tài)分布,且,則()A.0.16 B.0.32C.0.68 D.0.847.已知,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件8.已知,則下列說法錯誤的是()A.若,分別是直線,的方向向量,則直線,所成的角的余弦值是B.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是C.若,分別是平面,的法向量,則平面,所成的角的余弦值是D.若,分別是直線l的方向向量與平面的法向量,則直線l與平面所成的角的正弦值是9.命題“,都有”的否定為()A.,使得 B.,使得C.,使得 D.,使得10.已知a、b是兩條不同的直線,α、β、γ是三個不同的平面,則下列命題正確的是()A.若a∥α,a∥b,則b∥α B.若a∥α,a∥β,則α∥βC.若α⊥γ,β⊥γ,則α∥β D.若a⊥α,b⊥α,則a∥b11.已知雙曲線:,直線經(jīng)過點(diǎn),若直線與雙曲線的右支只有一個交點(diǎn),則直線的斜率的取值范圍是()A. B.C. D.12.若雙曲線經(jīng)過點(diǎn),且它的兩條漸近線方程是,則雙曲線的方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若直線與直線平行,則實數(shù)m的值為____________14.在空間直角坐標(biāo)系中,經(jīng)過且法向量的平面方程為,經(jīng)過且方向向量的直線方程為閱讀上面材料,并解決下列問題:給出平面的方程,經(jīng)過點(diǎn)的直線的方程為,則直線l與平面所成角的余弦值為___________.15.古希臘數(shù)學(xué)家阿波羅尼斯發(fā)現(xiàn):平面上到兩定點(diǎn)A,B的距離之比為常數(shù)的點(diǎn)的軌跡是—個圓心在直線上的圓.該圓被稱為阿氏圓,如圖,在長方體中,,點(diǎn)E在棱上,,動點(diǎn)P滿足,若點(diǎn)P在平面內(nèi)運(yùn)動,則點(diǎn)P對應(yīng)的軌跡的面積是___________;F為的中點(diǎn),則三棱錐體積的最小值為___________.16.已知函數(shù),則曲線在處的切線方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知平面直角坐標(biāo)系上一動點(diǎn)滿足:到點(diǎn)的距離是到點(diǎn)的距離的2倍.(1)求點(diǎn)的軌跡方程;(2)若點(diǎn)與點(diǎn)關(guān)于直線對稱,求的最大值.18.(12分)已知橢圓的離心率為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)過點(diǎn)作軸的平行線交軸于點(diǎn),過點(diǎn)的直線與橢圓交于兩個不同的點(diǎn)、,直線、與軸分別交于、兩點(diǎn),若,求直線的方程;(3)在第(2)問條件下,點(diǎn)是橢圓上的一個動點(diǎn),請問:當(dāng)點(diǎn)與點(diǎn)關(guān)于軸對稱時的面積是否達(dá)到最大?并說明理由.19.(12分)已知四棱錐的底面是矩形,底面,且,設(shè)E、F、G分別為PC、BC、CD的中點(diǎn),H為EG的中點(diǎn),如圖.(1)求證:平面;(2)求直線FH與平面所成角的大小.20.(12分)已知拋物線上的點(diǎn)M(5,m)到焦點(diǎn)F的距離為6.(1)求拋物線C的方程;(2)過點(diǎn)作直線l交拋物線C于A,B兩點(diǎn),且點(diǎn)P是線段AB的中點(diǎn),求直線l方程.21.(12分)已知函數(shù)(1)求函數(shù)在點(diǎn)處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間及極值22.(10分)在①,②,③這三個條件中任選一個,補(bǔ)充在下面問題的題設(shè)條件中.問題:等差數(shù)列的公差為,滿足,________?(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和得到最小值時的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設(shè)等比數(shù)列的公比為q,根據(jù)等比數(shù)列的通項公式,列出方程組,即可求得,進(jìn)而可求得答案.【詳解】設(shè)等比數(shù)列公比為q,則,解得,所以.故選:B2、D【解析】由離心率及橢圓參數(shù)關(guān)系可得,進(jìn)而可得.【詳解】因為,則,所以.故選:D3、A【解析】由兩條直線平行的充要條件即可求解.【詳解】解:因為直線與平行,所以,解得,故選:A.4、C【解析】求出圓心到直線的距離,由這個距離加上半徑即得【詳解】由圓,可得圓心坐標(biāo),半徑,則圓心C到直線的距離為,所以點(diǎn)P到直線l的距離的最大值為.故選:C5、C【解析】根據(jù)給定條件建立平面直角坐標(biāo)系,求出點(diǎn)P的軌跡方程,探求點(diǎn)P與直線AB的最大距離即可計算作答.【詳解】依題意,以線段AB的中點(diǎn)為原點(diǎn),直線AB為x軸建立平面直角坐標(biāo)系,如圖,則,,設(shè),因,則,化簡整理得:,因此,點(diǎn)P的軌跡是以點(diǎn)為圓心,為半徑的圓,點(diǎn)P不在x軸上時,與點(diǎn)A,B可構(gòu)成三角形,當(dāng)點(diǎn)P到直線(軸)的距離最大時,的面積最大,顯然,點(diǎn)P到軸的最大距離為,此時,,所以面積的最大值是故選:C6、C【解析】根據(jù)對稱性以及概率之和等于1求出,再由即可得出答案.【詳解】∵隨機(jī)變量服從正態(tài)分布,∴故選:C.7、C【解析】根據(jù)充要條件的定義進(jìn)行判斷【詳解】解:因為函數(shù)為增函數(shù),由,所以,故“”是“”的充分條件,由,所以,故“”是“”的必要條件,故“”是“”的充要條件故選:C8、D【解析】利用空間角的意義結(jié)合空間向量求空間角的方法逐一分析各選項即可判斷作答.【詳解】對于A,因分別是直線的方向向量,且,直線所成的角為,則,A正確;對于B,D,因分別是直線l的方向向量與平面的法向量,且,直線l與平面所成的角為,則有,B正確,D錯誤;對于C,因分別是平面的法向量,且,平面所成的角為,則不大于,,C正確.故選:D9、A【解析】根據(jù)命題的否定的定義判斷【詳解】全稱命題的否定是特稱命題,命題“,都有”的否定為:,使得故選:A10、D【解析】根據(jù)空間線、面的位置關(guān)系有關(guān)定理,對四個選項逐一分析排除,由此得出正確選項.【詳解】對于A選項,直線有可能平面內(nèi),故A選項錯誤.對于B選項,兩個平面有可能相交,平行于它們的交線,故B選項錯誤.對于C選項,可能相交,故C選項錯誤.根據(jù)線面垂直的性質(zhì)定理可知D選項正確.故選:D.11、D【解析】以雙曲線的兩條漸近線作為邊界條件,即可保證直線與雙曲線的右支只有一個交點(diǎn).【詳解】雙曲線:的兩條漸近線為和兩漸近線的傾斜角分別為和由經(jīng)過點(diǎn)的直線與雙曲線的右支只有一個交點(diǎn),可知直線的傾斜角取值范圍為,故直線的斜率的取值范圍是故選:D12、A【解析】根據(jù)雙曲線漸近線方程設(shè)出方程,再由其過的點(diǎn)即可求解.【詳解】漸近線方程是,設(shè)雙曲線方程為,又因為雙曲線經(jīng)過點(diǎn),所以有,所以雙曲線方程為,化為標(biāo)準(zhǔn)方程為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用兩條直線平行的充要條件,列式求解即可【詳解】解:因為直線與直線平行,所以,解得故答案為:14、##【解析】根據(jù)材料結(jié)合已知條件求得平面的法向量以及直線的方向向量,即可用向量法求得線面角.【詳解】因為平面的方程,不妨令,則,故其過點(diǎn),設(shè)其法向量為,根據(jù)題意則,即,又平面的方程為,則,不妨取,則,則平面的法向量;經(jīng)過點(diǎn)的直線的方程為,不妨取,則,則該直線過點(diǎn),則直線的方向向量.設(shè)直線與平面所成的角為,則.又,故,即直線l與平面所成角的余弦值為.故答案為:.15、①.②.【解析】建立空間直角坐標(biāo)系,根據(jù),可得對應(yīng)的軌跡方程;先求的面積,其是固定值,要使體積最小,只需求點(diǎn)到平面的距離的最小值即可.【詳解】分別以為軸建系,設(shè),而,,,,.由,有,化簡得對應(yīng)的軌跡方程為.所以點(diǎn)P對應(yīng)的軌跡的面積是.易得的三個邊即是邊長為為的等邊三角形,其面積為,,設(shè)平面的一個法向量為,則有,可取平面的一個法向量為,根據(jù)點(diǎn)的軌跡,可設(shè),,所以點(diǎn)到平面的距離,所以故答案為:;16、【解析】求出函數(shù)的導(dǎo)函數(shù),即可求出切線的斜率,再利用點(diǎn)斜式求出切線方程【詳解】解:∵,∴,又,∴曲線在點(diǎn)處的切線方程為,即.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)直接法求動點(diǎn)的軌跡方程,設(shè)點(diǎn),列方程即可.(2)點(diǎn)關(guān)于直線對稱的對稱點(diǎn)問題,可以先求出點(diǎn)到直線的距離最值的兩倍就是的距離,也可以求出點(diǎn)的軌跡方程直接求解的距離.【小問1詳解】設(shè),由題意,得:,化簡得,所以點(diǎn)軌跡方程為【小問2詳解】方法一:設(shè),因為點(diǎn)與點(diǎn)關(guān)于點(diǎn)對稱,則點(diǎn)坐標(biāo)為,因為點(diǎn)在圓,即上運(yùn)動,所以,所以點(diǎn)的軌跡方程為,所以兩圓的圓心分別為,半徑均為2,則.方法二:由可得:所以點(diǎn)的軌跡是以為圓心,2為半徑的圓軌跡的圓心到直線的距離為:18、(1);(2);(3)當(dāng)點(diǎn)與點(diǎn)關(guān)于軸對稱時,的面積達(dá)到最大,理由見解析.【解析】(1)設(shè),可得出,,將點(diǎn)的坐標(biāo)代入橢圓的方程,求出的值,即可得出橢圓的方程;(2)分析可知直線的斜率存在,設(shè)直線的方程為,設(shè)點(diǎn)、,將直線的方程與橢圓的方程聯(lián)立,列出韋達(dá)定理,由已知可得,結(jié)合韋達(dá)定理可求得的值,即可得出直線的方程;(3)設(shè)與直線平行且與橢圓相切的直線的方程為,將該直線方程與橢圓的方程聯(lián)立,由判別式為零可求得,分析可知當(dāng)點(diǎn)為直線與橢圓的切點(diǎn)時,的面積達(dá)到最大,求出直線與橢圓的切點(diǎn)坐標(biāo),可得出結(jié)論.【小問1詳解】解:因為,設(shè),則,,所以,橢圓的方程可表示為,將點(diǎn)的坐標(biāo)代入橢圓的方程可得,解得,因此,橢圓的方程為.【小問2詳解】解:設(shè)線段的中點(diǎn)為,因為,則軸,故直線、的傾斜角互補(bǔ),易知點(diǎn),若直線軸,則、為橢圓短軸的兩個頂點(diǎn),不妨設(shè)點(diǎn)、,則,,,不合乎題意.所以,直線的斜率存在,設(shè)直線的方程為,設(shè)點(diǎn)、,聯(lián)立,可得,,由韋達(dá)定理可得,,,,則,所以,解得,因此,直線的方程為.【小問3詳解】解:設(shè)與直線平行且與橢圓相切的直線的方程為,聯(lián)立,可得(*),,解得,由題意可知,當(dāng)點(diǎn)為直線與橢圓的切點(diǎn)時,此時的面積取最大值,當(dāng)時,方程(*)為,解得,此時,即點(diǎn).此時,點(diǎn)與點(diǎn)關(guān)于軸對稱,因此,當(dāng)點(diǎn)與點(diǎn)關(guān)于軸對稱時,的面積達(dá)到最大.【點(diǎn)睛】方法點(diǎn)睛:圓錐曲線中的最值問題解決方法一般分兩種:一是幾何法,特別是用圓錐曲線的定義和平面幾何的有關(guān)結(jié)論來求最值;二是代數(shù)法,常將圓錐曲線的最值問題轉(zhuǎn)化為二次函數(shù)或三角函數(shù)的最值問題,然后利用基本不等式、函數(shù)的單調(diào)性或三角函數(shù)的有界性等求最值19、(1)證明見解析(2)【解析】(1)連接CH,延長交PD于點(diǎn)K,連接BK,根據(jù)E、F、G分別為PC、BC、CD的中點(diǎn),易得,再利用線面平行的判定定理證明.(2)建立空間直角坐標(biāo),求得的坐標(biāo),平面PBC一個法向量,代入公式求解.【詳解】(1)如圖所示:連接CH,延長交PD于點(diǎn)K,連接BK,因為設(shè)E、F、G分別為PC、BC、CD的中點(diǎn),所以H為CK的中點(diǎn),所以,又平面平面,所以平面;(2)建立如圖所示直角坐標(biāo)系則,所以,設(shè)平面PBC一個法向量為:,則,有,令,,設(shè)直線FH與平面所成角為,所以,因為,所以.【點(diǎn)睛】本題主要考查線面平行的判定定理,線面角的向量求法,還考查了轉(zhuǎn)化化歸的思想和邏輯推理,運(yùn)算求解的能力,屬于中檔題.20、(1)(2)【解析】(1)由拋物線定義有求參數(shù),即可寫出拋物線方程.(2)由題意設(shè),聯(lián)立拋物線方程,結(jié)合韋達(dá)定理、中點(diǎn)坐標(biāo)求參數(shù)k,即可得直線l方程【小問1詳解】由題設(shè),拋物線準(zhǔn)線方程為,∴拋物線定義知:可得,故【小問2詳解】由題設(shè),直線l的斜率存在且不為0,設(shè)聯(lián)立方程,得,整理得,則.又P是線段AB的中點(diǎn),∴,即故l21、(1)+1;(2)單調(diào)增區(qū)間,單調(diào)減區(qū)間是和,極大值為,極小值為【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義可求出切線斜率,求出后利用點(diǎn)斜式即可得解;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)短信應(yīng)用服務(wù)協(xié)議書模板
- 公寓開發(fā)商租賃合同
- 店面租賃合同協(xié)議書范例
- 醫(yī)療技術(shù)合作合同范例
- 勞動續(xù)簽合同的注意事項
- 域名及主機(jī)協(xié)議書范本
- 房屋買賣委托代理合同
- 企業(yè)間還款協(xié)議書樣本
- 協(xié)議供貨招標(biāo)文件2024年
- 用人單位設(shè)置霸王條款的法律風(fēng)險
- 四川省成都市2023-2024學(xué)年高一上學(xué)期語文期中考試試卷(含答案)
- 小學(xué)六年級數(shù)學(xué)計算題100道(含答案)
- 大班綜合《要是你給老鼠玩手機(jī)》課件
- 液壓管道沖洗方案
- 課堂紀(jì)律不好的原因
- 課題初中數(shù)學(xué)作業(yè)優(yōu)化設(shè)計的研究研究報告
- 5s推進(jìn)計劃(絕對經(jīng)典)
- 小學(xué)數(shù)學(xué)答題卡模板(共3頁)
- 簡易呼吸氣囊操作評分標(biāo)準(zhǔn)
- 廚房安全生產(chǎn)培訓(xùn)內(nèi)容
- 蘋果公司崗位職責(zé)任職要求
評論
0/150
提交評論