陜西省西安高新唐南中學(xué)2025屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第1頁(yè)
陜西省西安高新唐南中學(xué)2025屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第2頁(yè)
陜西省西安高新唐南中學(xué)2025屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第3頁(yè)
陜西省西安高新唐南中學(xué)2025屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第4頁(yè)
陜西省西安高新唐南中學(xué)2025屆高二上數(shù)學(xué)期末聯(lián)考模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩12頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

陜西省西安高新唐南中學(xué)2025屆高二上數(shù)學(xué)期末聯(lián)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.某班新學(xué)期開學(xué)統(tǒng)計(jì)新冠疫苗接種情況,已知該班有學(xué)生45人,其中未完成疫苗接種的有5人,則該班同學(xué)的疫苗接種完成率為()A. B.C. D.2.直線與直線平行,則兩直線間的距離為()A. B.C. D.3.已知長(zhǎng)方體中,,,則直線與所成角的余弦值是()A. B.C. D.4.已知雙曲線的兩個(gè)焦點(diǎn)為,,是此雙曲線上的一點(diǎn),且滿足,,則該雙曲線的方程是()A. B.C. D.5.已知橢圓C:的左右焦點(diǎn)為F1,F2離心率為,過(guò)F2的直線l交C與A,B兩點(diǎn),若△AF1B的周長(zhǎng)為,則C的方程為A. B.C. D.6.阿基米德是古希臘著名的數(shù)學(xué)家、物理學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積,已知在平面直角坐標(biāo)系中,橢圓的面積為,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形,則橢圓的標(biāo)準(zhǔn)方程是()A. B.C. D.7.設(shè)點(diǎn)P是雙曲線,與圓在第一象限的交點(diǎn),、分別是雙曲線的左、右焦點(diǎn),且,則此雙曲線的離心率為()A. B.C. D.38.一部影片在4個(gè)單位輪流放映,每個(gè)單位放映一場(chǎng),不同的放映次序有()A.種 B.4種C.種 D.種9.已知橢圓的左右焦點(diǎn)分別為,直線與C相交于M,N兩點(diǎn)(其中M在第一象限),若M,,N,四點(diǎn)共圓,且直線傾斜角不小于,則橢圓C的離心率e的取值范圍是()A. B.C. D.10.焦點(diǎn)坐標(biāo)為(1,0)拋物線的標(biāo)準(zhǔn)方程是()A.y2=-4x B.y2=4xC.x2=-4y D.x2=4y11.已知半徑為2的圓經(jīng)過(guò)點(diǎn)(5,12),則其圓心到原點(diǎn)的距離的最小值為()A.10 B.11C.12 D.1312.在四棱錐中,分別為的中點(diǎn),則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),若,則S=________.14.已知雙曲線的左右焦點(diǎn)分別為,過(guò)點(diǎn)的直線交雙曲線右支于A,B兩點(diǎn),若是等腰三角形,且,則的面積為___________.15.如圖,在長(zhǎng)方體中,,,則直線與平面所成角的正弦值為__________.16.寫出直線一個(gè)方向向量______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在△中,內(nèi)角所對(duì)的邊分別為,已知(1)求角的大??;(2)若的面積,求的值18.(12分)如圖,在半徑為6m的圓形O為圓心鋁皮上截取一塊矩形材料OABC,其中點(diǎn)B在圓弧上,點(diǎn)A,C在兩半徑上,現(xiàn)將此矩形鋁皮OABC卷成一個(gè)以AB為母線的圓柱形罐子的側(cè)面不計(jì)剪裁和拼接損耗,設(shè)矩形的邊長(zhǎng)|AB|xm,圓柱的體積為Vm3.(1)寫出體積V關(guān)于x的函數(shù)關(guān)系式,并指出定義域;(2)當(dāng)x為何值時(shí),才能使做出的圓柱形罐子的體積V最大最大體積是多少?19.(12分)如圖,在直三棱柱中,,,,分別為,,的中點(diǎn),點(diǎn)在棱上,且,,.(1)求證:平面;(2)求證:平面平面;(3)求平面與平面的距離.20.(12分)已知橢圓的離心率為,右焦點(diǎn)為,斜率為1的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為.(1)求橢圓的方程;(2)求的面積.21.(12分)已知,(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞減區(qū)間;(2)當(dāng)時(shí),,求實(shí)數(shù)a的取值范圍22.(10分)已知數(shù)列的前項(xiàng)和為,且(1)求數(shù)列的通項(xiàng)公式;(2)記,求數(shù)列的前項(xiàng)和

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】利用古典概型的概率求解.【詳解】該班同學(xué)的疫苗接種完成率為故選:D2、B【解析】先根據(jù)直線平行求得,再根據(jù)公式可求平行線之間的距離.【詳解】由兩直線平行,得,故,當(dāng)時(shí),,,此時(shí),故兩直線平行時(shí)又之間的距離為,故選:B.3、C【解析】建立空間直角坐標(biāo)系,設(shè)直線與所成角為,由求解.【詳解】∵長(zhǎng)方體中,,,∴分別以,,為,,軸建立如圖所示空間直角坐標(biāo)系,,則,,,,所以,,設(shè)直線與所成角為,則,∴直線和夾角余弦值是.故選:C.4、A【解析】由,可得進(jìn)一步求出,由此得到,則該雙曲線的方程可求【詳解】,即,則.即,則該雙曲線的方程是:故選:A【點(diǎn)睛】方法點(diǎn)睛:求圓錐曲線的方程,常用待定系數(shù)法,先定式(根據(jù)已知確定焦點(diǎn)所在的坐標(biāo)軸,設(shè)出曲線的方程),再定式(根據(jù)已知建立方程組解方程組得解).5、A【解析】若△AF1B的周長(zhǎng)為4,由橢圓的定義可知,,,,,所以方程為,故選A.考點(diǎn):橢圓方程及性質(zhì)6、A【解析】由橢圓的面積為和兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形,得到求解.【詳解】由題意得,解得,所以橢圓的標(biāo)準(zhǔn)方程是.故選:A7、C【解析】根據(jù)幾何關(guān)系得到是直角三角形,然后由雙曲線的定義及勾股定理可求解.【詳解】點(diǎn)到原點(diǎn)的距離為,又因?yàn)樵谥?,,所以是直角三角形,?由雙曲線定義知,又因?yàn)?,所?在中,由勾股定理得,化簡(jiǎn)得,所以.故選:C.8、C【解析】根據(jù)題意得到一部影片在4個(gè)單位輪流放映,相當(dāng)于四個(gè)單位進(jìn)行全排列,即可得到答案.【詳解】一部影片在4個(gè)單位輪流放映,相當(dāng)于四個(gè)單位進(jìn)行全排列,所以不同的放映次序有種,故選:C9、B【解析】設(shè)橢圓的半焦距為c,由橢圓的中心對(duì)稱性和圓的性質(zhì)得以為直徑的圓與橢圓C有公共點(diǎn),則有以,再根據(jù)直線傾斜角不小于得,由橢圓的定義得,由此可求得橢圓離心率的范圍.【詳解】解:設(shè)橢圓的半焦距為c,由橢圓的中心對(duì)稱性和M,,N,四點(diǎn)共圓得,四邊形必為一個(gè)矩形,即以為直徑的圓與橢圓C有公共點(diǎn),所以,所以,所以,因?yàn)橹本€傾斜角不小于,所以直線傾斜角不小于,所以,化簡(jiǎn)得,,因?yàn)?,所以,所以,,又,因?yàn)?,所以,所以,所以,所?故選:B.10、B【解析】由題意設(shè)拋物線方程為y2=2px(p>0),結(jié)合焦點(diǎn)坐標(biāo)求得p,則答案可求【詳解】由題意可設(shè)拋物線方程為y2=2px(p>0),由焦點(diǎn)坐標(biāo)為(1,0),得,即p=2∴拋物的標(biāo)準(zhǔn)方程是y2=4x故選B【點(diǎn)睛】本題主要考查了拋物線的標(biāo)準(zhǔn)方程及其簡(jiǎn)單的幾何性質(zhì)的應(yīng)用,其中解答中熟記拋物線的幾何性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題11、B【解析】由條件可得圓心的軌跡是以點(diǎn)為圓心,半徑為2的圓,然后可得答案.【詳解】因?yàn)榘霃綖?的圓經(jīng)過(guò)點(diǎn)(5,12),所以圓心的軌跡是以點(diǎn)為圓心,半徑為2的圓,所以圓心到原點(diǎn)的距離的最小值為,故選:B12、A【解析】結(jié)合空間幾何體以及空間向量的線性運(yùn)算即可求出結(jié)果.【詳解】因?yàn)榉謩e為的中點(diǎn),則,,,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、1007【解析】可證f(x)+f(1﹣x)=1,由倒序相加法可得所求為1007對(duì)的組合,即1007個(gè)1,可得答案【詳解】解:∵函數(shù)f(x),∴f(x)+f(1﹣x)1故可得S=f()+f()…+f()=1007×1=1007,故答案為:1007點(diǎn)睛】本題考查倒序相加法求和,推斷出f(x)+f(1﹣x)=1是解題的關(guān)鍵.14、【解析】根據(jù)題意可知,,再結(jié)合,即可求出各邊,從而求出的面積【詳解】,所以,而是的等腰三角形,所以,故的面積為故答案為:15、##【解析】過(guò)作,垂足為,則平面,則即為所求角,從而可得結(jié)果.【詳解】依題意,畫出圖形,如圖,過(guò)作,垂足為,可知點(diǎn)H為中點(diǎn),由平面,可得,又所以平面,則即為所求角,因?yàn)椋?,所以,故答案為?16、【解析】本題可先將直線的一般式化為斜截式,然后根據(jù)斜率即可得到直線的一個(gè)方向向量.【詳解】由題意可知,直線可以化為,所以直線的斜率為,直線的一個(gè)方向向量可以寫為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】(1)由正弦定理,將條件中的邊化成角,可得,進(jìn)而可得的值;(2)由三角形面積公式可得,再由余弦定理可得,得最后結(jié)論試題解析:(1),又∴又得(2)由,∴又得,∴得考點(diǎn):正弦定理;余弦定理【易錯(cuò)點(diǎn)睛】解三角形問題的兩重性:①作為三角形問題,它必須要用到三角形的內(nèi)角和定理,正弦、余弦定理及其有關(guān)三角形的性質(zhì),及時(shí)進(jìn)行邊角轉(zhuǎn)化,有利于發(fā)現(xiàn)解題的思路;②它畢竟是三角變換,只是角的范圍受到了限制,因此常見的三角變換方法和原則都是適用的,注意“三統(tǒng)一”(即“統(tǒng)一角、統(tǒng)一函數(shù)、統(tǒng)一結(jié)構(gòu)”)是使問題獲得解決的突破口18、(1),;(2)時(shí),最大值為m3.【解析】(1)連接,在中,由,利用勾股定理可得,設(shè)圓柱底面半徑為,求出.利用(其中即可得出;(2)利用導(dǎo)數(shù),求出V的單調(diào)性,即可得出結(jié)論【小問1詳解】連接,在中,,,設(shè)圓柱底面半徑為,則,即,,其中【小問2詳解】由及,得,列表如下:,0↗極大值↘∴當(dāng)時(shí),有極大值,也是最大值為m319、(1)見解析(2)見解析(3)【解析】(1)利用勾股定理證得,證明平面,根據(jù)線面垂直的性質(zhì)證得,再根據(jù)線面垂直的判定定理即可得證;(2)取的中點(diǎn),連接,可得為的中點(diǎn),證明,四邊形是平行四邊形,可得,再根據(jù)面面平行的判定定理即可得證;(3)設(shè),由(1)(2)可得即為平面與平面的距離,求出的長(zhǎng)度,即可得解.【小問1詳解】證明:在直三棱柱中,為的中點(diǎn),,,故,因?yàn)?,所以,又平面,平面,所以,又因,,所以平面,又平面,所以,又,所以平面;【小?詳解】證明:取的中點(diǎn),連接,則為的中點(diǎn),因?yàn)?,,分別為,,的中點(diǎn),所以,且,所以四邊形是平行四邊形,所以,所以,又平面,平面,所以平面,因?yàn)?,所以,又平面,平面,所以平面,又因,平面,平面,所以平面平面;【小?詳解】設(shè),因?yàn)槠矫?,平面平面,所以平面,所以即為平面與平面的距離,因平面,所以,,所以,即平面與平面的距離為.20、(1)(2)【解析】(1)根據(jù)橢圓的簡(jiǎn)單幾何性質(zhì)知,又,寫出橢圓的方程;(2)先斜截式設(shè)出直線,聯(lián)立方程組,根據(jù)直線與圓錐曲線的位置關(guān)系,可得出中點(diǎn)為的坐標(biāo),再根據(jù)△為等腰三角形知,從而得的斜率為,求出,寫出:,并計(jì)算,再根據(jù)點(diǎn)到直線距離公式求高,即可計(jì)算出面積【詳解】(1)由已知得,,解得,又,所以橢圓的方程為(2)設(shè)直線的方程為,由得,①設(shè)、的坐標(biāo)分別為,(),中點(diǎn)為,則,,因?yàn)槭堑妊鞯牡走叄运缘男甭蕿?,解得,此時(shí)方程①為解得,,所以,,所以,此時(shí),點(diǎn)到直線:距離,所以△的面積考點(diǎn):1、橢圓的簡(jiǎn)單幾何性質(zhì);2、直線和橢圓的位置關(guān)系;3、橢圓的標(biāo)準(zhǔn)方程;4、點(diǎn)到直線的距離.【思路點(diǎn)晴】本題主要考查的是橢圓的方程,橢圓的簡(jiǎn)單幾何性質(zhì),直線與橢圓的位置關(guān)系,點(diǎn)到直線的距離,屬于難題.解決本類問題時(shí),注意使用橢圓的幾何性質(zhì),求得橢圓的標(biāo)準(zhǔn)方程;求三角形的面積需要求出底和高,在求解過(guò)程中要充分利用三角形是等腰三角形,進(jìn)而知道定點(diǎn)與弦中點(diǎn)的連線垂直,這是解決問題的關(guān)鍵21、(1)(2)【解析】(1)求出函數(shù)的導(dǎo)函數(shù),再解導(dǎo)函數(shù)的不等式,即可求出函數(shù)的單調(diào)遞減區(qū)間;(2)依題意可得

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論