版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
甘肅省白銀市靖遠縣第一中學2025屆高二數(shù)學第一學期期末綜合測試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.拋物線的焦點為F,準線為l,點P是準線l上的動點,若點A在拋物線C上,且,則(O為坐標原點)的最小值為()A. B.C. D.2.,,,,設,則下列判斷中正確的是()A. B.C. D.3.設等比數(shù)列,有下列四個命題:①{a②是等比數(shù)列;③是等比數(shù)列;④lgan其中正確命題的個數(shù)是()A.1 B.2C.3 D.44.已知橢圓及以下3個函數(shù):①;②;③,其中函數(shù)圖象能等分該橢圓面積的函數(shù)個數(shù)有()A.0個 B.1個C.2個 D.3個5.已知函數(shù)的導函數(shù)為,且滿足,則()A. B.C. D.6.若等比數(shù)列滿足,,則數(shù)列的公比為()A. B.C. D.7.如圖,在平行六面體中,AC與BD的交點為M,設,,,則下列向量中與相等的向量是()A. B.C. D.8.直線過點且與雙曲線僅有一個公共點,則這樣的直線有()A.1條 B.2條C.3條 D.4條9.在等差數(shù)列中,若,,則公差d=()A. B.C.3 D.-310.幾何學史上有一個著名的米勒問題:“設點、是銳角的一邊上的兩點,試在邊上找一點,使得最大的.”如圖,其結(jié)論是:點為過、兩點且和射線相切的圓的切點.根據(jù)以上結(jié)論解決一下問題:在平面直角坐標系中,給定兩點,,點在軸上移動,當取最大值時,點的橫坐標是()A.B.C.或D.或11.直線經(jīng)過兩個定點,,則直線傾斜角大小是()A. B.C. D.12.在平面直角坐標系中,橢圓的左、右焦點分別為,,過且垂直于軸的直線與交于,兩點,與軸交于點,,則的離心率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,,都為正實數(shù),,且,,成等比數(shù)列,則的最小值為______14.函數(shù)的最小值為______.15.如圖是某賽季CBA廣東東莞銀行隊甲、乙兩名籃球運動員每場比賽得分的莖葉圖,則甲、乙比賽得分的中位數(shù)之和是______.16.已知拋物線上一點到其焦點的距離為10.拋物線的方程為_____________;準線方程為_______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,求函數(shù)在處的切線方程;(2)討論函數(shù)在上的單調(diào)性.18.(12分)已知橢圓的離心率為,以為圓心,橢圓的短半軸長為半徑的圓與直線相切.(1)求橢圓的標準方程;(2)已知點和平面內(nèi)一點,過點任作直線與橢圓相交于,兩點,設直線,,的斜率分別為,,,,試求,滿足的關(guān)系式.19.(12分)已知數(shù)列的前n項和為,且(1)求證:數(shù)列為等比數(shù)列;(2)記,求數(shù)列的前n項和為20.(12分)已知等差數(shù)列滿足(1)求的通項公式;(2)設,求數(shù)列的前n項和21.(12分)在①,②,③,三個條件中任選一個,補充在下面的問題中,并解答.設數(shù)列是公比大于0的等比數(shù)列,其前項和為,數(shù)列是等差數(shù)列,其前項和為.已知,,,_____________.(1)請寫出你選擇條件的序號____________;并求數(shù)列和的通項公式;(2)求和.22.(10分)已知公差不為零的等差數(shù)列中,,且,,成等比數(shù)列.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)若,求數(shù)列的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】依題意得點坐標,作點關(guān)于的對稱點,則,求即為最小值【詳解】如圖所示:作點關(guān)于的對稱點,連接,設點,不妨設,由題意知,直線l方程為,則,得所以,得,所以由,當三點共線時取等號,又所以最小值為故選:D2、D【解析】通過湊配構(gòu)造的方式,構(gòu)造出新式子,且可以化簡為整數(shù),然后利用放縮思想得到S的范圍.【詳解】解:,,,,,;,.故選:D3、C【解析】根據(jù)等比數(shù)列的性質(zhì)對四個命題逐一分析,由此確定正確命題的個數(shù).【詳解】是等比數(shù)列可得(為定值)①為常數(shù),故①正確②,故②正確③為常數(shù),故③正確④不一定為常數(shù),故④錯誤故選C.【點睛】本小題主要考查等比數(shù)列的性質(zhì),屬于基礎題.4、C【解析】由橢圓的幾何性質(zhì)可得橢圓的圖像關(guān)于原點對稱,因為函數(shù),函數(shù)為奇函數(shù),其圖像關(guān)于原點對稱,則①②滿足題意,對于函數(shù)在軸右側(cè)時,,只有時,,即函數(shù)在軸右側(cè)的圖像顯然不能等分橢圓在軸右側(cè)的圖像的面積,又函數(shù)為偶函數(shù),其圖像關(guān)于軸對稱,則函數(shù)在軸左側(cè)的圖像顯然也不能等分橢圓在軸左側(cè)的圖像的面積,即函數(shù)的圖像不能等分該橢圓面積,得解.【詳解】解:因為橢圓的圖像關(guān)于原點對稱,對于①,函數(shù)為奇函數(shù),其圖像關(guān)于原點對稱,即可知的圖象能等分該橢圓面積;對于②,函數(shù)為奇函數(shù),其圖像關(guān)于原點對稱,即可知的圖象能等分該橢圓面積;對于③,對于函數(shù)在軸右側(cè)時,,只有時,,即函數(shù)在軸右側(cè)的圖像(如圖)顯然不能等分橢圓在軸右側(cè)的圖像的面積,又函數(shù)為偶函數(shù),其圖像關(guān)于軸對稱,則函數(shù)在軸左側(cè)的圖像顯然也不能等分橢圓在軸左側(cè)的圖像的面積,即函數(shù)的圖像不能等分該橢圓面積,即函數(shù)圖象能等分該橢圓面積的函數(shù)個數(shù)有2個,故選C.【點睛】本題考查了橢圓的幾何性質(zhì)、函數(shù)的奇偶性及函數(shù)的對稱性,重點考查了函數(shù)的性質(zhì),屬基礎題.5、C【解析】求出導數(shù)后,把x=e代入,即可求解.【詳解】因為,所以,解得故選:C6、D【解析】設等比數(shù)列的公比為,然后由已知條件列方程組求解即可【詳解】設等比數(shù)列的公比為,因為,,所以,所以,解得,故選:D7、B【解析】根據(jù)向量加法和減法法則即可用、、表示出.【詳解】故選:B.8、C【解析】根據(jù)直線的斜率存在與不存在,分類討論,結(jié)合雙曲線的漸近線的性質(zhì),即可求解.【詳解】當直線的斜率不存在時,直線過雙曲線的右頂點,方程為,滿足題意;當直線的斜率存在時,若直線與兩漸近線平行,也能滿足與雙曲線有且僅有一個公共點.綜上可得,滿足條件的直線共有3條.故選:C.【點睛】本題主要考查了直線與雙曲線的位置關(guān)系,以及雙曲線的漸近線的性質(zhì),其中解答中忽視斜率不存在的情況是解答的一個易錯點,著重考查了分析問題和解答問題的能力,以及分類討論思想的應用,屬于基礎題.9、C【解析】由等差數(shù)列的通項公式計算【詳解】因為,,所以.故選:C【點睛】本題考查等差數(shù)列的通項公式,利用等差數(shù)列通項公式可得,10、A【解析】根據(jù)米勒問題的結(jié)論,點應該為過點、的圓與軸的切點,設圓心的坐標為,寫出圓的方程,并將點、的坐標代入可求出點的橫坐標.【詳解】解:設圓心的坐標為,則圓的方程為,將點、的坐標代入圓的方程得,解得或(舍去),因此,點的橫坐標為,故選:A.11、A【解析】由兩點坐標求出斜率,再得傾斜角【詳解】由已知直線的斜率為,所以傾斜角為故選:A12、B【解析】由題意結(jié)合幾何性質(zhì)可得為等腰三角形,且,所以,求出的長,結(jié)合橢圓的定義可得答案.【詳解】如圖,由題意軸,軸,則又為的中點,則為的中點,又,則為等腰三角形,且,所以將代入橢圓方程得,,即所以,則由橢圓的定義可得,即則橢圓的離心率故選:B二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】利用等比中項及條件可得,進而可得,再利用基本不等式即得.【詳解】∵,,都為正實數(shù),,,成等比數(shù)列,∴,又,∴,即,∴,∴,當且僅當,即取等號.故答案為:.14、1【解析】由解析式知定義域為,討論、、,并結(jié)合導數(shù)研究的單調(diào)性,即可求最小值.【詳解】由題設知:定義域為,∴當時,,此時單調(diào)遞減;當時,,有,此時單調(diào)遞減;當時,,有,此時單調(diào)遞增;又在各分段的界點處連續(xù),∴綜上有:時,單調(diào)遞減,時,單調(diào)遞增;∴故答案為:1.15、58【解析】分別將甲、乙兩名運動員的得分按小到大或者大到小排序,分別確定中位數(shù),再相加即可【詳解】因為甲、乙兩名籃球運動員各參賽11場,故中位數(shù)是第6個數(shù)甲的得分按小到大排序后為:12,22,23,32,33,34,35,40,43,44,46,所以,中位數(shù)為34乙的得分按小到大排序后為:12,13,21,22,23,24,31,31,34,40,49所以,中位數(shù)為24所以,中位數(shù)之和為34+24=58,故答案為:5816、①.②.【解析】由題意得:拋物線焦點為F(0,),準線方程為y=﹣.因為點到其焦點的距離為10,所以根據(jù)拋物線的定義得到方程,得到該拋物線的準線方程【詳解】∵拋物線方程∴拋物線焦點為F(0,),準線方程為y=﹣,又∵點到其焦點的距離為10,∴根據(jù)拋物線的定義,得9+=10,∴p=2,拋物線∴準線方程為故答案為:,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)答案見解析【解析】(1)求出導函數(shù)后計算得斜率,由點斜式得直線方程并整理;(2)求出導函數(shù),然后分類討論它在上的正負得單調(diào)性【小問1詳解】當時,,則,故切線的斜率.又.所以函數(shù)在處的切線方程為:.【小問2詳解】由,得①當時,在上單調(diào)遞減;②當時,在上單調(diào)遞減;③當時,令,得當時,在上單調(diào)遞減;當時,在單調(diào)遞增;④當時,在上單調(diào)遞增;綜上:當時,在上單調(diào)遞減;當時,在上單調(diào)遞減,在上單調(diào)遞增;當時,在上單調(diào)遞增.18、(1);(2).【解析】(1)根據(jù)直線與圓相切可得,再結(jié)合離心率及間的關(guān)系可得的值,進而得到橢圓的方程;(2)分直線的斜率存在與不存在兩種情況考慮,分別求出點的坐標后再求出的值,進而得到,最后根據(jù)斜率公式可得所求的關(guān)系式【詳解】(1)因為圓與直線相切,所以圓心到直線的距離,即所以,又由題意得所以,所以橢圓的標準方程為(2)①當直線的斜率不存在時,可得直線方程為,由,解得或,不妨設,,所以,又,所以,所以,整理得所以滿足的關(guān)系式為.②當直線的斜率存在時,設直線,由消去并整理得,設點,則有,所以.所以,所以,整理得綜上可得滿足的關(guān)系式為【點睛】(1)判斷直線與橢圓的位置關(guān)系時,一般把二者方程聯(lián)立得到方程組,判斷方程組解的個數(shù),方程組有幾個解,直線與橢圓就有幾個公共點,方程組的解對應公共點的坐標(2)對于直線與橢圓位置關(guān)系的題目,注意設而不求和整體代入方法的運用.解題步驟為:①設直線與橢圓的交點為;②聯(lián)立直線與橢圓的方程,消元得到關(guān)于x或y的一元二次方程;③利用根與系數(shù)的關(guān)系設而不求;④利用題干中的條件轉(zhuǎn)化為,或,,進而求解.19、(1)證明見解析;(2).【解析】(1)由已知得,當時,兩式作差整理得,根據(jù)等比數(shù)列的定義可得證;(2)由(1)求得,,再運用錯位相減法可求得答案.【小問1詳解】證明:因為,……①,所以當時,,當時……②,則①-②可得,所以,因為,所以數(shù)列是以2為首項,2為公比的等比數(shù)列【小問2詳解】解:由(1)知,即,因為所以,則……①,①得……②,①-②得,所以.20、(1)(2)【解析】(1)設等差數(shù)列的公差為d,由題意得列出方程組,可求得的值,代入公式,即可得答案.(2)由(1)可得,利用等比數(shù)列的定義,可證數(shù)列為等比數(shù)列,結(jié)合前n項和公式,即可得答案.【小問1詳解】設等差數(shù)列的公差為d,由題意得,解得,所以通項公式【小問2詳解】由(1)可得,,又,所以數(shù)列是以4為首項,4為公比的等比數(shù)列,所以21、(1)選①,,;選②,,;選③,,;(2),【解析】(1)選條件①根據(jù)等比數(shù)列列出方程求出公比得通項公式,再由等差數(shù)列列出方程求出首項與公差可得通項公式,選②③與①相同的方法求數(shù)列的通項公式;(2)根據(jù)等比數(shù)列、等差數(shù)列的求和公式解計算即可.【小問1詳解】選條件①:設等比數(shù)列的公比為q,,,解得或,,,.設等差數(shù)列的公差為d,,,解得,,.選條件②:設等比數(shù)列的公比為q,,,解得或,,,.設等差數(shù)列的公差為,,,解得,,選條件③:設等比數(shù)列的公比為,,,解得或,,,.設等差數(shù)列的公差為,,,解得,【小問2詳解】由(1)知,,22、(1)(2)【解析】(Ⅰ)將數(shù)列中的項用和表示,根據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)水穩(wěn)料供應商合同
- 鋁型材購銷合同書范本
- 花崗巖選購合同樣本
- 項目咨詢服務合同評估全文
- 電氣安裝工程分包協(xié)議樣本
- 購房補充協(xié)議的作用和意義
- 商務秘書社交媒體營銷合同
- 酒店應急預案服務合同
- 英文版購銷合同交流
- 房屋買賣定金合同判決書案例借鑒
- 加油站安全檢查表分析(SCL)及評價記錄
- 豐田車系卡羅拉(雙擎)轎車用戶使用手冊【含書簽】
- 幼兒園突發(fā)安全事件事故處置措施
- 現(xiàn)代藥物制劑與新藥研發(fā)智慧樹知到答案章節(jié)測試2023年蘇州大學
- 肺結(jié)核的學習課件
- 心肺復蘇術(shù)最新版
- 2023-2024學年貴州省貴陽市小學數(shù)學六年級上冊期末自測提分卷
- GB/T 9115.2-2000凹凸面對焊鋼制管法蘭
- 永久避難硐室安裝施工組織措施
- 元旦節(jié)前安全教育培訓-教學課件
- 芯片工藝流程課件1
評論
0/150
提交評論