版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
吉林省吉化第一高級中學(xué)2025屆數(shù)學(xué)高二上期末監(jiān)測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.金剛石的成分為純碳,是自然界中天然存在的最堅硬物質(zhì),它的結(jié)構(gòu)是由8個等邊三角形組成的正八面體.若某金剛石的棱長為2,則它的體積為()A. B.C. D.2.閱讀如圖所示程序框圖,運行相應(yīng)的程序,輸出的S的值等于()A.2 B.6C.14 D.303.已知斜三棱柱所有棱長均為2,,點、滿足,,則()A. B.C.2 D.4.已知四棱柱ABCD-A1B1C1D1的底面是邊長為2的正方形,側(cè)棱與底面垂直,若點C到平面AB1D1的距離為,則直線與平面所成角的余弦值為()A. B.C. D.5.已知雙曲線的左、右焦點分別為,,過點作直線交雙曲線的右支于A,B兩點.若,則雙曲線的離心率為()A. B.C. D.6.在中,角所對的邊分別為,,,則外接圓的面積是()A. B.C. D.7.一動圓與圓外切,而與圓內(nèi)切,那么動圓的圓心的軌跡是()A.橢圓 B.雙曲線C.拋物線 D.雙曲線的一支8.從編號為1~120的商品中利用系統(tǒng)抽樣的方法抽8件進行質(zhì)檢,若所抽樣本中含有編號66的商品,則下列編號一定被抽到的是()A.111 B.52C.37 D.89.橢圓的焦點坐標(biāo)為()A.和 B.和C.和 D.和10.已知等比數(shù)列的前項和為,公比為,則()A. B.C. D.11.函數(shù)的導(dǎo)數(shù)為()A.B.CD.12.若圓與圓相外切,則的值為()A. B.C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.將一枚質(zhì)地均勻的骰子,先后拋擲次,則出現(xiàn)向上的點數(shù)之和為的概率是________.14.若過點和的直線與直線平行,則_______15.如圖,某建筑物的高度,一架無人機上的儀器觀測到建筑物頂部的仰角為,地面某處的俯角為,且,則此無人機距離地面的高度為________16.在空間直角坐標(biāo)系Oxyz中,點在x,y,z軸上的射影分別為A,B,C,則四面體PABC的體積為______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列滿足,且,,成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè)數(shù)列的前項和為,求的最小值及此時的值.18.(12分)已知函數(shù),求函數(shù)在上的最大值與最小值.19.(12分)如圖,四棱錐中,底面為矩形,底面,,點是棱的中點(1)求證:平面,并求直線與平面的距離;(2)若,求平面與平面所成夾角的余弦值20.(12分)已知數(shù)列是等差數(shù)列,其前項和為,且,.(1)求;(2)記數(shù)列的前項和為,求當(dāng)取得最小值時的的值.21.(12分)已知函數(shù)(1)求函數(shù)在點處的切線方程;(2)求函數(shù)的單調(diào)區(qū)間及極值22.(10分)在四棱錐中,平面,底面是邊長為2的菱形,分別為的中點.(1)證明:平面;(2)求三棱錐的體積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由幾何關(guān)系先求出一個正四面體的高,再結(jié)合錐體體積公式即可求解正八面體的體積.【詳解】如圖,設(shè)底面中心為,連接,由幾何關(guān)系知,,則正八面體體積為.故選:C2、C【解析】模擬運行程序,直到得出輸出的S的值.【詳解】運行程序框圖,,,;,,;,,;,輸出.故選:C3、D【解析】以向量為基底向量,則,根據(jù)條件由向量的數(shù)量積的運算性質(zhì),兩邊平方可得答案.【詳解】以向量為基底向量,所以所以故選:D4、A【解析】先由等面積法求得的長,再以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系,運用線面角的向量求解方法可得答案【詳解】如圖,連接交于點,過點作于,則平面,則,設(shè),則,則根據(jù)三角形面積得,代入解得以為坐標(biāo)原點,建立如圖所示的空間直角坐標(biāo)系則,,設(shè)平面的法向量為,,,則,即,令,得,所以直線與平面所成的角的余弦值為,故選:5、A【解析】根據(jù)給定條件結(jié)合雙曲線定義求出,,再借助余弦定理求出半焦距c即可計算作答.【詳解】因,令,,而雙曲線實半軸長,由雙曲線定義知,,而,于是可得,在等腰中,,令雙曲線半焦距為c,在中,由余弦定理得:,而,,,解得,所以雙曲線的離心率為.故選:A【點睛】方法點睛:求雙曲線的離心率的方法:(1)定義法:通過已知條件列出方程組,求得得值,根據(jù)離心率的定義求解離心率;(2)齊次式法:由已知條件得出關(guān)于的二元齊次方程,然后轉(zhuǎn)化為關(guān)于的一元二次方程求解;(3)特殊值法:通過取特殊值或特殊位置,求出離心率.6、B【解析】利用余弦定理可得,然后利用正弦定理可得,即求.【詳解】因為,所以,由余弦定理得,,所以,設(shè)外接圓的半徑為,由正統(tǒng)定理得,,所以,所以外接圓的面積是.故選:B.7、A【解析】依據(jù)定義法去求動圓的圓心的軌跡即可解決.【詳解】設(shè)動圓的半徑為r,又圓半徑為1,圓半徑為8,則,,可得,又則動圓的圓心的軌跡是以為焦點長軸長為9的橢圓.故選:A8、A【解析】先求出等距抽樣的組距,從而得到被抽到的是,從而求出答案.【詳解】120件商品中抽8件,故,因為含有編號66的商品被抽到,故其他能被抽到的是,當(dāng)時,,其他三個選項均不合要求,故選:A9、D【解析】本題是焦點在x軸的橢圓,求出c,即可求得焦點坐標(biāo).【詳解】,可得焦點坐標(biāo)為和.故選:D10、D【解析】利用等比數(shù)列的求和公式可求得的值.【詳解】由等比數(shù)列的求和公式可得,解得.故選:D.11、B【解析】由導(dǎo)數(shù)運算法則可求出.【詳解】,.故選:B.12、D【解析】確定出兩圓的圓心和半徑,然后由兩圓的位置關(guān)系建立方程求解即可.【詳解】由可得,所以圓的圓心為,半徑為,由可得,所以圓的圓心為,半徑為,因為兩圓相外切,所以,解得,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】將向上的點數(shù)記作,先計算出所有的基本事件數(shù),并列舉出事件“出現(xiàn)向上的點數(shù)之和為”所包含的基本事件,然后利用古典概型的概率公式可計算出所求事件的概率.【詳解】將骰子先后拋擲次,出現(xiàn)向上的點數(shù)記作,則基本事件數(shù)為,向上的點數(shù)之和為這一事件記為,則事件所包含的基本事件有:、、,共個基本事件,因此,.故答案為:.【點睛】本題考查利用古典概型的概率公式計算概率,解題時一般要列舉出相應(yīng)的基本事件,遵循不重不漏的基本原則,考查計算能力,屬于基礎(chǔ)題.14、【解析】根據(jù)兩直線的位置關(guān)系求解.【詳解】因為過點和的直線與直線平行,所以,解得,故答案為:315、200【解析】在Rt△ABC中求得AC的值,△ACQ中由正弦定理求得AQ的值,在Rt△APQ中求得PQ的值【詳解】根據(jù)題意,可得Rt△ABC中,∠BAC=60°,BC=300,∴AC200;△ACQ中,∠AQC=45°+15°=60°,∠QAC=180°﹣45°﹣60°=75°,∴∠QCA=180°﹣∠AQC﹣∠QAC=45°,由正弦定理,得,解得AQ200,在Rt△APQ中,PQ=AQsin45°=200200m故答案為200【點睛】本題考查了解三角形的應(yīng)用問題,考查正弦定理,三角形內(nèi)角和問題,考查轉(zhuǎn)化化歸能力,是基礎(chǔ)題16、2【解析】將物體放入長方體中,切割處理求得體積.【詳解】如圖所示:四面體PABC可以看成以1,2,3為棱長的長方體切去四個全等的三棱錐,所以四面體PABC的體積為.故答案為:2三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2);或【解析】(1)由題意得到數(shù)列為公差為的等差數(shù)列,結(jié)合,,成等比數(shù)列,列出方程求得,即可得到數(shù)列的通項公式;(2)由,得到時,,當(dāng)時,,當(dāng)時,,結(jié)合等差數(shù)列的求和公式,即可求解.【小問1詳解】解:由題意,數(shù)列滿足,所以數(shù)列為公差為的等差數(shù)列,又由,,成等比數(shù)列,可得,即,解得,所以數(shù)列的通項公式.【小問2詳解】解:由數(shù)列的通項公式,令,即,解得,所以當(dāng)時,;當(dāng)時,;當(dāng)時,,所以當(dāng)或時,取得最小值,最小值為.18、最大值為,最小值為【解析】利用導(dǎo)數(shù)可求得的單調(diào)性,進而可得極值,比較極值和端點值的大小即可求解.【詳解】由可得:,則當(dāng)時,;當(dāng)時,;所以在上單調(diào)遞減,在上單調(diào)遞增,,又因為,,所以,綜上所述:函數(shù)在上的最大值為,最小值為.19、(1)證明見解析,直線與平面的距離為(2)【解析】(1)以點為坐標(biāo)原點,、、所在直線分別為、、軸建立空間直角坐標(biāo)系,設(shè),利用空間向量法可證得平面,以及求得直線與平面的距離;(2)利用空間向量法可求得平面與平面所成夾角的余弦值【小問1詳解】解:因為平面,四邊形為矩形,以點為坐標(biāo)原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標(biāo)系,設(shè),則、、、、、,,,,,所以,,,所以,,,又因為,因此,平面.所以,平面的一個法向量為,,平面,平面,則平面,所以,直線到平面的距離為.【小問2詳解】解:若,則、,設(shè)平面的法向量為,,,則,取,可得,設(shè)平面的法向量為,,,則,取,可得,.因此,平面與平面所成夾角的余弦值為.20、(1)(2)10或11【解析】(1)利用通項公式以及求和公式列出方程組得出;(2)先求出數(shù)列通項公式,再根據(jù)得出取得最小值時的的值.【小問1詳解】設(shè)等差數(shù)列的公差為,則由得解得所以.【小問2詳解】因為,所以,則.令,解得,由于,故或,故當(dāng)前項和取得最小值時的值為10或11.21、(1)+1;(2)單調(diào)增區(qū)間,單調(diào)減區(qū)間是和,極大值為,極小值為【解析】(1)根據(jù)導(dǎo)數(shù)的幾何意義可求出切線斜率,求出后利用點斜式即可得解;(2)求出函數(shù)導(dǎo)數(shù)后,解一元二次不等式分別求出、時的取值范圍即可得解.【詳解】(1)因為,所以,∴切線方程為,即+1;(2),所以當(dāng)或時,,當(dāng)時,,所以函數(shù)單調(diào)增區(qū)間是,單調(diào)減區(qū)間是和,極大值為,極小值為22、(1)證明
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 最后一課綜合課程設(shè)計
- 文史類短期課程設(shè)計論文
- 港航課程設(shè)計
- 2024年度汽車銷售公司與保險公司關(guān)于2024年度汽車銷售保險合同2篇
- 2024版無人駕駛航空器研發(fā)與銷售合同3篇
- 2024版工傷賠償協(xié)議標(biāo)準(zhǔn)化流程合同3篇
- 2024版干洗店洗滌技術(shù)培訓(xùn)與職業(yè)技能鑒定合同3篇
- 2024版特許加盟合同-餐飲業(yè)2篇
- 2024版新能源汽車銷售及售后服務(wù)合同模板3篇
- 2024版抵押車借款合同編制標(biāo)準(zhǔn)與操作手冊3篇
- ZN12-10真空斷路器系列概述
- 盧家宏《我心永恒MyHeartWillGoOn》指彈吉他譜
- 體檢中心建設(shè)標(biāo)準(zhǔn)
- 閥門的壓力試驗規(guī)范
- 鄭家坡鐵礦充填系統(tǒng)設(shè)計
- 2021江蘇學(xué)業(yè)水平測試生物試卷(含答案)
- 裝飾裝修工程完整投標(biāo)文件.doc
- 汽車維修創(chuàng)業(yè)計劃書
- 直讀光譜儀測量低合金鋼中各元素含量的不確定度評定
- 江蘇省居住建筑熱環(huán)境和節(jié)能設(shè)計標(biāo)準(zhǔn)規(guī)范
- 學(xué)校發(fā)展性評價自查自評報告(定稿)
評論
0/150
提交評論