2025屆云南省中央民族大附屬中學芒市國際學校高一上數(shù)學期末綜合測試模擬試題含解析_第1頁
2025屆云南省中央民族大附屬中學芒市國際學校高一上數(shù)學期末綜合測試模擬試題含解析_第2頁
2025屆云南省中央民族大附屬中學芒市國際學校高一上數(shù)學期末綜合測試模擬試題含解析_第3頁
2025屆云南省中央民族大附屬中學芒市國際學校高一上數(shù)學期末綜合測試模擬試題含解析_第4頁
2025屆云南省中央民族大附屬中學芒市國際學校高一上數(shù)學期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2025屆云南省中央民族大附屬中學芒市國際學校高一上數(shù)學期末綜合測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,若,則不等式解集為A. B.C. D.2.表示不超過x的最大整數(shù),例如,.若是函數(shù)的零點,則()A.1 B.2C.3 D.43.下列命題中正確的是()A.第一象限角小于第二象限角 B.銳角一定是第一象限角C.第二象限角是鈍角 D.平角大于第二象限角4.已知函數(shù)的值域為R,則實數(shù)的取值范圍是()A. B.C. D.5.在有聲世界,聲強級是表示聲強度相對大小的指標.聲強級(單位:dB)與聲強度(單位:)之間的關系為,其中基準值.若聲強級為60dB時的聲強度為,聲強級為90dB時的聲強度為,則的值為()A.10 B.30C.100 D.10006.在平面直角坐標系中,角以為始邊,終邊與單位圓交于點,則()A. B.C. D.7.下列指數(shù)式與對數(shù)式互化不正確的一組是()A.與 B.與C.與 D.與8.如圖,質(zhì)點在單位圓周上逆時針運動,其初始位置為,角速度為2,則點到軸距離關于時間的函數(shù)圖象大致為()A. B.C. D.9.有一組實驗數(shù)據(jù)如下表所示:1.93.04.0516.11.54.07.512.018.0現(xiàn)準備用下列函數(shù)中的一個近似地表示這些數(shù)據(jù)滿足的規(guī)律,其中最接近的一個是()A. B.C. D.10.若,,則角的終邊在A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空題:本大題共6小題,每小題5分,共30分。11.若函數(shù)y=loga(2-ax)在[0,1]上單調(diào)遞減,則a的取值范圍是________12.若,則a的取值范圍是___________13.銳角中,分別為內(nèi)角的對邊,已知,,,則的面積為__________14.已知函數(shù),則=____________15.要在半徑cm的圓形金屬板上截取一塊扇形板,使弧AB的長為m,那么圓心角_________.(用弧度表示)16.函數(shù)是冪函數(shù)且為偶函數(shù),則m的值為_________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,是正方形,平面,,,,分別是,,的中點()求四棱錐的體積()求證:平面平面()在線段上確定一點,使平面,并給出證明18.(1)求值:;(2)求值:;(3)已知,求的值19.已知向量=(3,4),=(1,2),=(-2,-2)(1)求||,||的值;(2)若=m+n,求實數(shù)m,n的值;(3)若(+)∥(-+k),求實數(shù)k的值20.已知集合M是滿足下列性質(zhì)的函數(shù)的全體:在定義域D內(nèi)存在,使得成立函數(shù)是否屬于集合M?說明理由;若函數(shù)屬于集合M,試求實數(shù)k和b滿足的約束條件;設函數(shù)屬于集合M,求實數(shù)a的取值范圍21.,不等式的解集為(1)求實數(shù)b,c的值;(2)時,求的值域

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】,又函數(shù)是定義在上的偶函數(shù),且在上單調(diào)遞增,所以,解得.考點:偶函數(shù)的性質(zhì).【思路點睛】本題主要考查不等式的求解,利用函數(shù)奇偶性和單調(diào)性的性質(zhì)進行轉化是解決本題的關鍵.根據(jù)函數(shù)奇偶性可得,再根據(jù)函數(shù)的單調(diào)性,可得;然后再解不等式即可求出結果2、B【解析】利用零點存在定理得到零點所在區(qū)間求解.【詳解】因為函數(shù)在定義域上連續(xù)的增函數(shù),且,又∵是函數(shù)的零點,∴,所以,故選:B.3、B【解析】根據(jù)象限角的定義及銳角、鈍角及平角的大小逐一分析判斷即可得解.【詳解】解:為第一象限角,為第二象限角,故A錯誤;因為銳角,所以銳角一定是第一象限角,故B正確;因為鈍角,平角,為第二象限角,故CD錯誤.故選:B.4、C【解析】分段函數(shù)值域為R,在x=1左側值域和右側值域并集為R.【詳解】當,∴當時,,∵的值域為R,∴當時,值域需包含,∴,解得,故選:C.5、D【解析】根據(jù)題意,把轉化為對數(shù)運算即可計算【詳解】由題意可得:故選:D【點睛】數(shù)學中的新定義題目解題策略:(1)仔細閱讀,理解新定義的內(nèi)涵;(2)根據(jù)新定義,對對應知識進行再遷移.6、A【解析】根據(jù)任意角三角函數(shù)的概念可得出,然后利用誘導公式求解.【詳解】因為角以為始邊,且終邊與單位圓交于點,所以,則.故選:A.【點睛】當以為始邊,已知角終邊上一點的坐標為時,則,.7、C【解析】根據(jù)指數(shù)式與對數(shù)式的互化關系逐一判斷即可.【詳解】,故正確;,故正確;,,故不正確;,故正確故選:C【點睛】本題主要考查了指數(shù)式與對數(shù)式的互化,屬于基礎題.8、A【解析】利用角速度先求出時,的值,然后利用單調(diào)性進行判斷即可【詳解】因為,所以由,得,此時,所以排除CD,當時,越來越小,單調(diào)遞減,所以排除B,故選:A9、B【解析】先畫出實驗數(shù)據(jù)的散點圖,結合各選項中的函數(shù)特征可得的選項.【詳解】實驗數(shù)據(jù)的散點圖如圖所示:4個選項中的函數(shù),只有B符合,故選:B.10、D【解析】本題考查三角函數(shù)的性質(zhì)由知角可能在第一、四象限;由知角可能在第三、四象限;綜上得角的終邊在箱四象限故正確答案為二、填空題:本大題共6小題,每小題5分,共30分。11、(1,2)【解析】分類討論得到當時符合題意,再令在[0,1]上恒成立解出a的取值范圍即可.【詳解】令,當時,為減函數(shù),為減函數(shù),不合題意;當時,為增函數(shù),為減函數(shù),符合題意,需要在[0,1]上恒成立,當時,成立,當時,恒成立,即,綜上.故答案為:(1,2).12、【解析】先通過的大小確定的單調(diào)性,再利用單調(diào)性解不等式即可【詳解】解:且,,得,又在定義域上單調(diào)遞減,,,解得故答案為:【點睛】方法點睛:在解決與對數(shù)函數(shù)相關的解不等式問題時,要優(yōu)先考慮利用對數(shù)函數(shù)的單調(diào)性來求解.在利用單調(diào)性時,一定要明確底數(shù)a的取值對函數(shù)增減性的影響,及真數(shù)必須為正的限制條件13、【解析】由已知條件可得,,再由正弦定理可得,從而根據(jù)三角形內(nèi)角和定理即可求得,從而利用公式即可得到答案.【詳解】,由得,又為銳角三角形,,又,即,解得,.由正弦定理可得,解得,又,,故答案為.【點睛】三角形面積公式的應用原則:(1)對于面積公式S=absinC=acsinB=bcsinA,一般是已知哪一個角就使用哪一個公式(2)與面積有關的問題,一般要用到正弦定理或余弦定理進行邊和角的轉化14、【解析】由函數(shù)解析式,先求得,再求得代入即得解.【詳解】函數(shù),則==,故答案為.【點睛】本題考查函數(shù)值的求法,屬于基礎題.15、【解析】由弧長公式變形可得:,代入計算即可.【詳解】解:由題意可知:(弧度).故答案為:.16、【解析】由函數(shù)是冪函數(shù),則,解出的值,再驗證函數(shù)是否為偶函數(shù),得出答案.【詳解】由函數(shù)是冪函數(shù),則,得或當時,函數(shù)不是偶函數(shù),所以舍去.當時,函數(shù)是偶函數(shù),滿足條件.故答案為:【點睛】本題考查冪函數(shù)的概念和冪函數(shù)的奇偶性,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析(3)當為線段的中點時,滿足使平面【解析】(1)根據(jù)線面垂直確定高線,再根據(jù)錐體體積公式求體積(2)先尋找線線平行,根據(jù)線面平行判定定理得線面平行,最后根據(jù)面面平行判定定理得結論(3)由題意可得平面,即,取線段的中點,則有,而,根據(jù)線面垂直判定定理得平面試題解析:()解:∵平面,∴()證明:∵,分別是,的中點∴,由正方形,∴,又平面,∴平面,同理可得:,可得平面,又,∴平面平面()解:當為線段中點時,滿足使平面,下面給出證明:取的中點,連接,,∵,∴四點,,,四點共面,由平面,∴,又,,∴平面,∴,又為等腰三角形,為斜邊中點,∴,又,∴平面,即平面點睛:(1)探索性問題通常用“肯定順推法”,將不確定性問題明朗化.其步驟為假設滿足條件的元素(點、直線、曲線或參數(shù))存在,用待定系數(shù)法設出,列出關于待定系數(shù)的方程組,若方程組有實數(shù)解,則元素(點、直線、曲線或參數(shù))存在;否則,元素(點、直線、曲線或參數(shù))不存在.(2)反證法與驗證法也是求解探索性問題常用的方法.18、(1)90;(2)0;(3).【解析】(1)利用指數(shù)冪的運算性質(zhì)可求代數(shù)式的值.(2)利用對數(shù)的運算性質(zhì)可求代數(shù)式的值.(3)將給定的代數(shù)式兩邊平方后得到,再次平方后則可求的值.【詳解】(1)原式(2)原式(3)因為,兩邊平方得即所以即又,所以19、(1)||=5;;(2);(3).【解析】(1)利用向量的模長的坐標公式即得;(2)利用向量的線性坐標表示即得;(3)利用向量平行的坐標表示即求.【小問1詳解】∵向量=(3,4),=(1,2),∴||=5,;【小問2詳解】∵=(3,4),=(1,2),=(-2,-2),=m+n,∴(3,4)=m(1,2)+n(-2,-2)=(m-2n,2m-2n),所以,得;【小問3詳解】∵(+)∥(-+k),又-+k=(-1-2k,-2-2k),+=(4,6),∴6(-1-2k)=4(-2-2k),解得,故實數(shù)k的值為.20

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論