版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
新疆阿克蘇市阿瓦提縣第四中學(xué)2025屆高二上數(shù)學(xué)期末檢測(cè)模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如果在一實(shí)驗(yàn)中,測(cè)得的四組數(shù)值分別是,則y與x之間的回歸直線方程是()A. B.C. D.2.等差數(shù)列中,若,,則等于()A. B.C. D.3.過(guò)點(diǎn),的直線的斜率等于2,則的值為()A.0 B.1C.3 D.44.在正四面體中,點(diǎn)為所在平面上動(dòng)點(diǎn),若與所成角為定值,則動(dòng)點(diǎn)的軌跡是()A.圓 B.橢圓C.雙曲線 D.拋物線5.已知等差數(shù)列的前n項(xiàng)和為Sn,首項(xiàng)a1=1,若,則公差d的取值范圍為()A. B.C. D.6.某校開(kāi)展研學(xué)活動(dòng)時(shí)進(jìn)行勞動(dòng)技能比賽,通過(guò)初選,選出共6名同學(xué)進(jìn)行決賽,決出第1名到第6名的名次(沒(méi)有并列名次),和去詢問(wèn)成績(jī),回答者對(duì)說(shuō)“很遺?,你和都末拿到冠軍;對(duì)說(shuō)“你當(dāng)然不是最差的”.試從這個(gè)回答中分析這6人的名次排列順序可能出現(xiàn)的結(jié)果有()A.720種 B.600種C.480種 D.384種7.在中,a,b,c分別為角A,B,C的對(duì)邊,已知,,的面積為,則()A. B.C. D.8.在空間直角坐標(biāo)系中,已知點(diǎn)M是點(diǎn)在坐標(biāo)平面內(nèi)的射影,則的坐標(biāo)是()A. B.C. D.9.若存在,使得不等式成立,則實(shí)數(shù)k的取值范圍為()A. B.C. D.10.已知三棱錐O—ABC,點(diǎn)M,N分別為線段AB,OC的中點(diǎn),且,,,用,,表示,則等于()A. B.C. D.11.定義在R上的偶函數(shù)在上單調(diào)遞增,且,則滿足的x的取值范圍是()A. B.C. D.12.已知直線、的方向向量分別為、,若,則等于()A.1 B.2C.0 D.3二、填空題:本題共4小題,每小題5分,共20分。13.某企業(yè)有4個(gè)分廠,新培訓(xùn)了一批6名技術(shù)人員,將這6名技術(shù)人員分配到各分廠,要求每個(gè)分廠至少1人,則不同的分配方案種數(shù)為_(kāi)_______.14.已知,,且,則的最小值為_(kāi)_____.15.已知直線與之間的距離為,則__________16.某工廠生產(chǎn)甲、乙、丙、丁四種不同型號(hào)的產(chǎn)品,產(chǎn)量分別為100,200,150,50件.為檢驗(yàn)產(chǎn)品的質(zhì)量,現(xiàn)用分層抽樣的方法從以上所有產(chǎn)品中抽取60件進(jìn)行檢驗(yàn),則應(yīng)從丙種型號(hào)的產(chǎn)品中抽取___________件三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,為平行四邊形,,平面,且,點(diǎn)是的中點(diǎn).(1)求證:平面;(2)在線段上(不含端點(diǎn))是否存在一點(diǎn),使得二面角的余弦值為?若存在,確定的位置;若不存在,請(qǐng)說(shuō)明理由.18.(12分)已知數(shù)列滿足,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,為數(shù)列的前n項(xiàng)和,求.19.(12分)已知橢圓:的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,且經(jīng)過(guò)點(diǎn).(1)求的標(biāo)準(zhǔn)方程;(2)的右頂點(diǎn)為,過(guò)右焦點(diǎn)的直線與交于不同的兩點(diǎn),,求面積的最大值.20.(12分)已知數(shù)列{an}為等差數(shù)列,且a1+a5=-12,a4+a8=0.(1)求數(shù)列{an}的通項(xiàng)公式;(2)若等比數(shù)列{bn}滿足b1=-8,b2=a1+a2+a3,求數(shù)列{bn}的通項(xiàng)公式21.(12分)已知函數(shù).其中e為然對(duì)數(shù)的底數(shù)(1)若,求函數(shù)的單調(diào)區(qū)間;(2)若,討論函數(shù)零點(diǎn)個(gè)數(shù)22.(10分)如圖,四棱錐P-ABCD中,PA平面ABCD,,∠BAD=120o,AB=AD=2,點(diǎn)M在線段PD上,且DM=2MP,平面(1)求證:平面MAC平面PAD;(2)若PA=6,求平面PAB和平面MAC所成銳二面角的余弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】根據(jù)已知數(shù)據(jù)求樣本中心點(diǎn),由樣本中心點(diǎn)在回歸直線上,將其代入各選項(xiàng)的回歸方程驗(yàn)證即可.【詳解】由題設(shè),,因?yàn)榛貧w直線方程過(guò)樣本點(diǎn)中心,A:,排除;B:,滿足;C:,排除;D:,排除.故選:B2、C【解析】由等差數(shù)列下標(biāo)和性質(zhì)可得.【詳解】因?yàn)椋?,所?故選:C3、A【解析】利用斜率公式即求.【詳解】由題可得,∴.故選:A4、B【解析】把條件轉(zhuǎn)化為與圓錐的軸重合,面與圓錐的相交軌跡即為點(diǎn)的軌跡后即可求解.【詳解】以平面截圓錐面,平面位置不同,生成的相交軌跡可以為拋物線、雙曲線、橢圓、圓.令與圓錐的軸線重合,如圖所示,則圓錐母線與所成角為定值,所以面與圓錐的相交軌跡即為點(diǎn)的軌跡.根據(jù)題意,不可能垂直于平面即軌跡不可能為圓.面不可能與圓錐軸線平行,即軌跡不可能是雙曲線.可進(jìn)一步計(jì)算與平面所成角為,即時(shí),軌跡為拋物線,時(shí),軌跡為橢圓,,所以軌跡為橢圓.故選:B.【點(diǎn)睛】本題考查了平面截圓錐面所得軌跡問(wèn)題,考查了轉(zhuǎn)化化歸思想,屬于難題.5、A【解析】該等差數(shù)列有最大值,可分析得,據(jù)此可求解.【詳解】,故,故有故d取值范圍為.故選:A6、D【解析】不是第一名且不是最后一名,的限制最多,先排有4種情況,再排,也有4種情況,余下的問(wèn)題是4個(gè)元素在4個(gè)位置全排列,根據(jù)分步計(jì)數(shù)原理求解即可【詳解】由題意,不是第一名且不是最后一名,的限制最多,故先排,有4種情況,再排,也有4種情況,余下4人有種情況,利用分步相乘計(jì)數(shù)原理知有種情況故選:D.7、C【解析】利用面積公式,求出,進(jìn)而求出,利用余弦定理求出,再利用正弦定理求出【詳解】由面積公式得:,因?yàn)榈拿娣e為,所以,求得:因,所以由余弦定理得:所以由正弦定理得:,即,解得:故選:C8、C【解析】點(diǎn)在平面內(nèi)的射影是坐標(biāo)不變,坐標(biāo)為0的點(diǎn).【詳解】點(diǎn)在坐標(biāo)平面內(nèi)的射影為,故點(diǎn)M的坐標(biāo)是故選:C9、C【解析】根據(jù)題意和一元二次不等式能成立可得對(duì)于,成立,令,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,即可求出.【詳解】存在,不等式成立,則,能成立,即對(duì)于,成立,令,,則,令,所以當(dāng),單調(diào)遞增,當(dāng),單調(diào)遞減,又,所以f(x)>-3,所以.故選:C10、A【解析】利用空間向量基本定理進(jìn)行計(jì)算.【詳解】.故選:A11、B【解析】,再根據(jù)函數(shù)的奇偶性和單調(diào)性可得或,解之即可得解.【詳解】解:,由題意可得或即或,解得或故選:B.12、C【解析】由可得出,利用空間向量數(shù)量積的坐標(biāo)運(yùn)算可得出關(guān)于實(shí)數(shù)的等式,由此可解得實(shí)數(shù)的值.【詳解】若,則,所以,所以,解得.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、1560【解析】先把6名技術(shù)人員分成4組,每組至少一人,有兩種情況:(1)4個(gè)組的人數(shù)按3,1,1,1分配,(2)4個(gè)組的人數(shù)為2,2,1,1,求出所有的分組方法,然后再把4個(gè)組的人分給4個(gè)分廠,從而可求得答案【詳解】先把6名技術(shù)人員分成4組,每組至少一人.(1)若4個(gè)組的人數(shù)按3,1,1,1分配,則不同的分配方案有(種).(2)若4個(gè)組的人數(shù)為2,2,1,1,則不同的分配方案有(種).故所有分組方法共有20+45=65(種).再把4個(gè)組的人分給4個(gè)分廠,不同的方法有(種).故答案為:156014、4【解析】利用“1”的妙用,運(yùn)用基本不等式即可求解.【詳解】∵,即,∴又∵,,∴,當(dāng)且僅當(dāng)且,即,時(shí),等號(hào)成立,則的最小值為4.故答案為:.15、或##或【解析】利用平行直線間距離公式構(gòu)造方程求解即可.【詳解】方程可化為:,由平行直線間距離公式得:,解得:或.故答案為:或.16、【解析】根據(jù)分層抽樣的方法,即可求解.【詳解】由題意,甲、乙、丙、丁四種不同型號(hào)的產(chǎn)品,產(chǎn)量分別為100,200,150,50件,用分層抽樣的方法從以上所有產(chǎn)品中抽取60件進(jìn)行檢驗(yàn),則應(yīng)從丙種型號(hào)的產(chǎn)品中抽取個(gè)數(shù)為件.故答案為:.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)存在,【解析】(1)連接交于點(diǎn),由三角形中位線性質(zhì)知,由線面平行判定定理證得結(jié)論;(2)以為原點(diǎn)建立空間直角坐標(biāo)系,假設(shè),可用表示出點(diǎn)坐標(biāo);根據(jù)二面角的向量求法可根據(jù)二面角的余弦值構(gòu)造出關(guān)于的方程,從而解得結(jié)果.【詳解】(1)連接交于點(diǎn),連接,四邊形為平行四邊形,為中點(diǎn),又為中點(diǎn),,平面,平面,平面;(2)平面,,兩兩互相垂直,則以為坐標(biāo)原點(diǎn),可建立如下圖所示的空間直角坐標(biāo)系:則,,,,,,設(shè),且,則,,即,設(shè)平面的法向量,又,,則,令,則,,;設(shè)平面的一個(gè)法向量,又,,則,令,則,,;,解得:或,二面角的余弦值為,二面角為銳二面角,不滿足題意,舍去,即.在線段上存在點(diǎn),時(shí),二面角的余弦值為.【點(diǎn)睛】本題考查立體幾何中的線面平行關(guān)系的證明、存在性問(wèn)題的求解;求解存在性問(wèn)題的關(guān)鍵是能夠利用共線向量的方式將所求點(diǎn)坐標(biāo)表示出來(lái),進(jìn)而利用二面角的向量求法構(gòu)造方程;易錯(cuò)點(diǎn)是忽略二面角的范圍,造成參數(shù)值求解錯(cuò)誤.18、(1)(2)【解析】(1)由題意可得數(shù)列是以2為公差的等差數(shù)列,再由可求出,從而可求出通項(xiàng)公式,(2)由(1)可得,然后利用分組求和可求出【小問(wèn)1詳解】因?yàn)閿?shù)列滿足,所以數(shù)列是以2為公差的等差數(shù)列,因?yàn)?,所以,得,所以【小?wèn)2詳解】由(1)可得,所以19、(1);(2)【解析】(1)利用已知條件,結(jié)合橢圓方程求出,即可得到橢圓方程(2)設(shè)出直線方程,聯(lián)立橢圓與直線方程,利用韋達(dá)定理,弦長(zhǎng)公式,列出三角形的面積,再利用基本不等式轉(zhuǎn)化求解即可【詳解】(1)解:由題意解得,,所以橢圓的標(biāo)準(zhǔn)方程為(2)點(diǎn),右焦點(diǎn),由題意知直線的斜率不為0,故設(shè)的方程為,,,聯(lián)立方程得消去,整理得,∴,,,,當(dāng)且僅當(dāng)時(shí)等號(hào)成立,此時(shí):,所以面積的最大值為【點(diǎn)睛】本題考查橢圓的性質(zhì)和方程的求法,考查聯(lián)立直線方程和橢圓方程消去未知數(shù),運(yùn)用韋達(dá)定理化簡(jiǎn)整理和運(yùn)算能力,屬于中檔題20、(1)an=2n-12;(2).【解析】(1)根據(jù)等差數(shù)列的性質(zhì)得到,然后根據(jù)等差數(shù)列的通項(xiàng)公式求出和的值即可.(2)根據(jù)(1)的條件求出b2=-24,b1=-8,然后根據(jù)等比數(shù)列的通項(xiàng)公式求出的值即可.【小問(wèn)1詳解】設(shè)等差數(shù)列{an}的公差為d,因?yàn)閍1+a5=2a3=-12,a4+a8=2a6=0,所以,所以,解得,所以an=-10+2(n-1)=2n-12.【小問(wèn)2詳解】設(shè)等比數(shù)列{bn}的公比為q,因?yàn)閎2=a1+a2+a3=-24,b1=-8,所以-8q=-24,即q=3,因此.21、(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;(2)當(dāng)時(shí),無(wú)零點(diǎn);當(dāng)時(shí),有1個(gè)零點(diǎn);當(dāng)時(shí),有2個(gè)零點(diǎn).【解析】(1)求導(dǎo),令導(dǎo)數(shù)大于零求增區(qū)間,令導(dǎo)數(shù)小于零求減區(qū)間;(2)求導(dǎo)數(shù),分、、a>2討論函數(shù)f(x)單調(diào)性和零點(diǎn)即可.【小問(wèn)1詳解】當(dāng)時(shí),,易知定義域?yàn)镽,,當(dāng)時(shí),;當(dāng)或時(shí),故的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為和;【小問(wèn)2詳解】當(dāng)時(shí),x正0負(fù)0正單增極大值單減極小值單增當(dāng)時(shí),恒成立,∴;當(dāng)時(shí),①當(dāng)時(shí),,∴無(wú)零點(diǎn);②當(dāng)時(shí),,∴有1個(gè)零點(diǎn);③當(dāng)時(shí),,又當(dāng)時(shí),單調(diào)遞增,,∴有2個(gè)零點(diǎn);綜上所述:當(dāng)時(shí),無(wú)零點(diǎn);當(dāng)時(shí),有1個(gè)零點(diǎn);當(dāng)時(shí),有2個(gè)零點(diǎn)【點(diǎn)睛】結(jié)論點(diǎn)睛:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問(wèn)題.(4)考查數(shù)形結(jié)合思想的應(yīng)用22、(1)證明見(jiàn)解析(2)【解析】(1)連接BD交AC于點(diǎn)E,連接ME,由所給條件推理出CA⊥AD,進(jìn)而得CA⊥平面PAD,證得結(jié)論(2)首先以A為原點(diǎn),射線AC,AD,AP分別為x,y,z軸非負(fù)半軸建立空間直角坐標(biāo)系,再利用向量法求解二面角即可【小問(wèn)1詳解】(1)連接BD交AC于點(diǎn)E,連接ME,如圖所示
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣東外語(yǔ)外貿(mào)大學(xué)《辦公室事務(wù)管理》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東司法警官職業(yè)學(xué)院《自動(dòng)變速器》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東培正學(xué)院《海關(guān)報(bào)關(guān)實(shí)務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 七年級(jí)上冊(cè)《5.1.1 從算式到方程》課件與作業(yè)
- 七年級(jí)上冊(cè)《2.2.1 第1課時(shí) 有理數(shù)的乘法》課件與作業(yè)
- 廣東茂名幼兒師范專科學(xué)?!栋l(fā)動(dòng)機(jī)構(gòu)造與原理》2023-2024學(xué)年第一學(xué)期期末試卷
- 廣東理工職業(yè)學(xué)院《三維動(dòng)畫(huà)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 一年級(jí)數(shù)學(xué)計(jì)算題專項(xiàng)練習(xí)1000題匯編
- 物流工作總結(jié)范文10篇
- 【北京特級(jí)教師】2020-2021學(xué)年人教版高中地理必修二輔導(dǎo)講義:工業(yè)區(qū)位選擇和工業(yè)地域
- 學(xué)校安全工作匯報(bào)PPT
- 一年級(jí)語(yǔ)文上冊(cè)《兩件寶》教案1
- 關(guān)注健康預(yù)防甲流甲型流感病毒知識(shí)科普講座課件
- 咨詢公司工作總結(jié)(共5篇)
- GB/T 4852-2002壓敏膠粘帶初粘性試驗(yàn)方法(滾球法)
- GB/T 38836-2020農(nóng)村三格式戶廁建設(shè)技術(shù)規(guī)范
- 醫(yī)院固定資產(chǎn)及物資購(gòu)置工作流程圖
- 中學(xué)學(xué)校辦公室主任個(gè)人述職報(bào)告
- GA/T 1774-2021法庭科學(xué)手印檢驗(yàn)實(shí)驗(yàn)室建設(shè)規(guī)范
- 京東商業(yè)計(jì)劃書(shū)課件
- 2023年陜西金融控股集團(tuán)有限公司校園招聘筆試題庫(kù)及答案解析
評(píng)論
0/150
提交評(píng)論