版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
新疆烏魯木齊地區(qū)2025屆高一上數(shù)學期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知函數(shù)是定義在R上的偶函數(shù),若對于任意不等實數(shù),,,不等式恒成立,則不等式的解集為()A. B.C. D.2.定義在上的連續(xù)函數(shù)有下列的對應值表:01234560-1.2-0.22.1-23.22.4則下列說法正確是A.函數(shù)在上有4個零點 B.函數(shù)在上只有3個零點C.函數(shù)在上最多有4個零點 D.函數(shù)在上至少有4個零點3.下列各組函數(shù)是同一函數(shù)的是()①與②與③與④與A.②④ B.③④C.②③ D.①④4.若,則所在象限是A.第一、三象限 B.第二、三象限C.第一、四象限 D.第二、四象限5.關于函數(shù)有下述四個結論:①是偶函數(shù);②在區(qū)間單調(diào)遞減;③在有個零點;④的最大值為.其中所有正確結論的編號是()A.①②④ B.②④C.①④ D.①③6.在下列四組函數(shù)中,與表示同一函數(shù)的是()A.,B.,C.,D.,7.命題:“”的否定是()A. B.C. D.8.的值為A. B.C. D.9.如圖中的圖象所表示的函數(shù)的解析式為()A.BC.D.10.給定下列四個命題:①若一個平面內(nèi)的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經(jīng)過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.其中,為真命題的是A.①和② B.②和③C.③和④ D.②和④二、填空題:本大題共6小題,每小題5分,共30分。11.下列命題中正確的是__________.(填上所有正確命題的序號)①若,,則;②若,,則;③若,,則;④若,,,,則12.已知函數(shù)的圖像恒過定點,若點也在函數(shù)的圖像上,則__________13.將函數(shù)y=sin2x+π4的圖象上各點的縱坐標不變,橫坐標伸長到原來的14.已知奇函數(shù)滿足,,若當時,,則______15.經(jīng)過點,且在軸上的截距等于在軸上的截距的2倍的直線的方程是__________16.寫出一個同時滿足以下條件的函數(shù)___________;①是周期函數(shù);②最大值為3,最小值為;③在上單調(diào)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)為偶函數(shù).(1)求的值;(2)若恒成立,求實數(shù)的取值范圍.18.求下列各式的值(1);(2)19.對于函數(shù),存在實數(shù),使成立,則稱為關于參數(shù)的不動點.(1)當時,凾數(shù)在上存在兩個關于參數(shù)的相異的不動點,試求參數(shù)的取值范圍;(2)對于任意的,總存在,使得函數(shù)有關于參數(shù)的兩個相異的不動點,試求的取值范圍.20.如圖,已知四棱柱的底面是菱形,側棱底面,是的中點,,.(1)證明:平面;(2)求直線與平面所成的角的正弦值.21.已知直線:的傾斜角為(1)求a;(2)若直線與直線平行,且在y軸上的截距為-2,求直線與直線的交點坐標
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由條件對于任意不等實數(shù),,不等式恒成立可得函數(shù)在上為減函數(shù),利用函數(shù)性質(zhì)化簡不等式求其解.【詳解】∵函數(shù)是定義在R上的偶函數(shù),∴,∴不等式可化為∵對于任意不等實數(shù),,不等式恒成立,∴函數(shù)在上為減函數(shù),又,∴,∴,∴不等式的解集為故選:C.2、D【解析】由表格數(shù)據(jù)可知,連續(xù)函數(shù)滿足,根據(jù)零點存在定理可得,在區(qū)間上,至少各有一個零點,所以函數(shù)在上至少有個零點,故選D.3、B【解析】利用函數(shù)的三要素:定義域、值域、對應關系相同即可求解.【詳解】對于①,與,定義域均為,但對應,兩函數(shù)的對應關系不同,故①不是同一函數(shù);對于②,的定義域為,的定義域為,故②不是同一函數(shù);對于③,與定義域均為,函數(shù)表達式可化簡為,故③兩函數(shù)為同一函數(shù);對于④,根據(jù)函數(shù)的概念,與,定義域、對應關系、值域均相同,故④為同一函數(shù),故選:B【點睛】本題考查了函數(shù)的三要素,函數(shù)相同只需函數(shù)的三要素:定義域、值域、對應關系相同,屬于基礎題.4、A【解析】先由題中不等式得出在第二象限,然后求出的范圍,即可判斷其所在象限【詳解】因為,,所以,故在第二象限,即,故,當為偶數(shù)時,在第一象限,當為奇數(shù)時,在第三象限,即所在象限是第一、三象限故選A.【點睛】本題考查了三角函數(shù)的象限角,屬于基礎題5、A【解析】利用偶函數(shù)的定義可判斷出命題①的正誤;去絕對值,利用余弦函數(shù)的單調(diào)性可判斷出命題②的正誤;求出函數(shù)在區(qū)間上的零點個數(shù),并利用偶函數(shù)的性質(zhì)可判斷出命題③的正誤;由取最大值知,然后去絕對值,即可判斷出命題④的正誤.【詳解】對于命題①,函數(shù)的定義域為,且,則函數(shù)為偶函數(shù),命題①為真命題;對于命題②,當時,,則,此時,函數(shù)在區(qū)間上單調(diào)遞減,命題②正確;對于命題③,當時,,則,當時,,則,由偶函數(shù)的性質(zhì)可知,當時,,則函數(shù)在上有無數(shù)個零點,命題③錯誤;對于命題④,若函數(shù)取最大值時,,則,,當時,函數(shù)取最大值,命題④正確.因此,正確的命題序號為①②④.故選A.【點睛】本題考查與余弦函數(shù)基本性質(zhì)相關的命題真假的判斷,解題時要結合自變量的取值范圍去絕對值,結合余弦函數(shù)的基本性質(zhì)進行判斷,考查推理能力,屬于中等題.6、B【解析】根據(jù)題意,先看函數(shù)的定義域是否相同,再觀察兩個函數(shù)的對應法則是否相同,即可得到結論.【詳解】對于A中,函數(shù)的定義域為,而函數(shù)的定義域為,所以兩個函數(shù)不是同一個函數(shù);對于B中,函數(shù)的定義域和對應法則完全相同,所以是同一個函數(shù);對于C中,函數(shù)的定義域為,而函數(shù)的定義域為,但是解析式不一樣,所以兩個函數(shù)不是同一個函數(shù);對于D中,函數(shù)的定義域為,而函數(shù)的定義域為,所以不是同一個函數(shù),故選:B.7、C【解析】寫出全稱命題的否定即可.【詳解】“”的否定是:.故選:C.8、C【解析】sin210°=sin(180°+30°)=﹣sin30°=﹣.故選C.9、B【解析】分段求解:分別把0≤x≤1及1≤x≤2時解析式求出即可【詳解】當0≤x≤1時,設f(x)=kx,由圖象過點(1,),得k=,所以此時f(x)=x;當1≤x≤2時,設f(x)=mx+n,由圖象過點(1,),(2,0),得,解得所以此時f(x)=.函數(shù)表達式可轉(zhuǎn)化為:y=|x-1|(0≤x≤2)故答案為B【點睛】本題考查函數(shù)解析式的求解問題,本題根據(jù)圖象可知該函數(shù)為分段函數(shù),分兩段用待定系數(shù)法求得10、D【解析】利用線面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對四個命題分別分析進行選擇.【詳解】當兩個平面相交時,一個平面內(nèi)的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內(nèi)與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選D【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查空間想象能力,是中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、③【解析】對于①,若,,則與可能異面、平行,故①錯誤;對于②,若,,則與可能平行、相交,故②錯誤;對于③,若,,則根據(jù)線面垂直的性質(zhì),可知,故③正確;對于④,根據(jù)面面平行的判定定理可知,還需添加相交,故④錯誤,故答案為③.【方法點晴】本題主要考查線面平行的判定與性質(zhì)、面面平行的性質(zhì)及線面垂直的性質(zhì),屬于難題.空間直線、平面平行或垂直等位置關系命題的真假判斷,常采用畫圖(尤其是畫長方體)、現(xiàn)實實物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.12、1【解析】首先確定點A的坐標,然后求解函數(shù)的解析式,最后求解的值即可.【詳解】令可得,此時,據(jù)此可知點A的坐標為,點在函數(shù)的圖像上,故,解得:,函數(shù)的解析式為,則.【點睛】本題主要考查函數(shù)恒過定點問題,指數(shù)運算法則,對數(shù)運算法則等知識,意在考學生的轉(zhuǎn)化能力和計算求解能力.13、f【解析】利用三角函數(shù)圖象的平移和伸縮變換即可得正確答案.【詳解】函數(shù)y=sin2x+π得到y(tǒng)=sin再向右平移π4個單位,得到y(tǒng)=故最終所得到的函數(shù)解析式為:fx故答案為:fx14、【解析】由,可得是以周期為周期函數(shù),由奇函數(shù)的性質(zhì)以及已知區(qū)間上的解析式可求值,從而計算求解.【詳解】因為,即是以周期為的周期函數(shù).為奇函數(shù)且當時,,,當時,所以故答案為:15、或【解析】設所求直線方程為,將點代入上式可得或.考點:直線方程16、(答案不唯一)【解析】根據(jù)余弦函數(shù)的性質(zhì),構造滿足題意的函數(shù),由此即可得到結果.詳解】由題意可知,,因為的周期為,滿足條件①;又,所以,滿足條件②;由于函數(shù)在區(qū)間上單調(diào)遞減,所以區(qū)間上單調(diào)遞減,故滿足條件③.故答案為:.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)根據(jù)奇偶函數(shù)的定義可得,列出方程,結合對數(shù)運算公式解方程即可;(2)根據(jù)指數(shù)、對數(shù)函數(shù)的性質(zhì)求出函數(shù),進而得到,解不等式即可.【小問1詳解】∵是偶函數(shù),∴,即,∴【小問2詳解】由(1)知,∴又由解得,∴當且僅當x=0時等號成立,∴∴又∵恒成立,∴∴m≤-1或m≥318、(1);(2).【解析】(1)首先利用公式降冪,然后將寫為將化為即可得解;(2)將記為,記為,再用公式展開,然后化簡求值.【詳解】(1)原式=(2)原式=故答案為:2;-1【點睛】本題考查三角函數(shù)誘導公式,二倍角公式,兩角和與差的余弦公式,屬于基礎題.19、(1)(2)【解析】(1)題目轉(zhuǎn)化為,根據(jù)雙勾函數(shù)的單調(diào)性得到函數(shù)值域,得到范圍.(2)根據(jù)得到,設,構造函數(shù),根據(jù)函數(shù)的單調(diào)性得到函數(shù)的最大值,討論端點值的大小關系解不等式得到答案.【小問1詳解】,,即,,即,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,,,當時,,有兩個解,故.【小問2詳解】,即,,整理得到,故,設,,則,即,設,在上單調(diào)遞減,在上單調(diào)遞增,故,當,即或時,,解得或,故或;當,即時,,解得或,故;綜上所述:或,即20、(1)詳見解析;(2).【解析】(1)連接交于點,連接,,可證明四邊形是平行四邊形,從而,再由線面平行的判定即可求解;(2)作出平面的垂線,即可作出線面角,求出相關線段的長度即可求解.試題解析:(1)連接交于點,連接,,∵為菱形,∴點在上,且,又∵,故四邊形是平行四邊形,則,∴平面;(2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧中醫(yī)藥大學杏林學院《礦山運輸》2023-2024學年第一學期期末試卷
- 蘭州職業(yè)技術學院《分析化學及實驗》2023-2024學年第一學期期末試卷
- 江西軟件職業(yè)技術大學《不動產(chǎn)測繪》2023-2024學年第一學期期末試卷
- 湖南應用技術學院《數(shù)據(jù)庫原理與應用實驗》2023-2024學年第一學期期末試卷
- 湖南工學院《產(chǎn)品開發(fā)與服務設計》2023-2024學年第一學期期末試卷
- 衡水職業(yè)技術學院《J》2023-2024學年第一學期期末試卷
- 重慶資源與環(huán)境保護職業(yè)學院《大氣科學概論》2023-2024學年第一學期期末試卷
- 重慶交通職業(yè)學院《計算機輔助實驗》2023-2024學年第一學期期末試卷
- 仲愷農(nóng)業(yè)工程學院《虛擬儀器應用及項目開發(fā)》2023-2024學年第一學期期末試卷
- 浙江商業(yè)職業(yè)技術學院《壓縮機原理與結構》2023-2024學年第一學期期末試卷
- ECE-R90-歐盟第3版-中文版(R090r3e-01)
- 2024-2025學年重慶市北碚區(qū)三上數(shù)學期末監(jiān)測試題含解析
- 大宗貿(mào)易居間協(xié)議2024年
- 第2課《濟南的冬天》課件-2024-2025學年統(tǒng)編版語文七年級上冊
- 2024年水利工程高級工程師理論考試題庫(濃縮400題)
- 增強現(xiàn)實技術在藝術教育中的應用
- TD/T 1060-2021 自然資源分等定級通則(正式版)
- 《創(chuàng)傷失血性休克中國急診專家共識(2023)》解讀
- 倉庫智能化建設方案
- 海外市場開拓計劃
- 供應鏈組織架構與職能設置
評論
0/150
提交評論