2025屆新疆生產(chǎn)建設(shè)兵團(tuán)四校數(shù)學(xué)高三上期末考試模擬試題含解析_第1頁
2025屆新疆生產(chǎn)建設(shè)兵團(tuán)四校數(shù)學(xué)高三上期末考試模擬試題含解析_第2頁
2025屆新疆生產(chǎn)建設(shè)兵團(tuán)四校數(shù)學(xué)高三上期末考試模擬試題含解析_第3頁
2025屆新疆生產(chǎn)建設(shè)兵團(tuán)四校數(shù)學(xué)高三上期末考試模擬試題含解析_第4頁
2025屆新疆生產(chǎn)建設(shè)兵團(tuán)四校數(shù)學(xué)高三上期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆新疆生產(chǎn)建設(shè)兵團(tuán)四校數(shù)學(xué)高三上期末考試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.費(fèi)馬素數(shù)是法國大數(shù)學(xué)家費(fèi)馬命名的,形如的素數(shù)(如:)為費(fèi)馬索數(shù),在不超過30的正偶數(shù)中隨機(jī)選取一數(shù),則它能表示為兩個不同費(fèi)馬素數(shù)的和的概率是()A. B. C. D.2.如圖所示,網(wǎng)絡(luò)紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.83.如圖,在底面邊長為1,高為2的正四棱柱中,點(diǎn)是平面內(nèi)一點(diǎn),則三棱錐的正視圖與側(cè)視圖的面積之和為()A.2 B.3 C.4 D.54.已知是虛數(shù)單位,則()A. B. C. D.5.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時,發(fā)現(xiàn)三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進(jìn)行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實上,甲、乙、丙三人的陳述都只對一半,根據(jù)以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路6.已知是定義在上的奇函數(shù),當(dāng)時,,則()A. B.2 C.3 D.7.已知等比數(shù)列滿足,,等差數(shù)列中,為數(shù)列的前項和,則()A.36 B.72 C. D.8.直角坐標(biāo)系中,雙曲線()與拋物線相交于、兩點(diǎn),若△是等邊三角形,則該雙曲線的離心率()A. B. C. D.9.計算等于()A. B. C. D.10.如圖,圓是邊長為的等邊三角形的內(nèi)切圓,其與邊相切于點(diǎn),點(diǎn)為圓上任意一點(diǎn),,則的最大值為()A. B. C.2 D.11.記等差數(shù)列的公差為,前項和為.若,,則()A. B. C. D.12.已知正項數(shù)列滿足:,設(shè),當(dāng)最小時,的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.過點(diǎn),且圓心在直線上的圓的半徑為__________.14.若向量與向量垂直,則______.15.若函數(shù)為奇函數(shù),則_______.16.如圖所示,邊長為1的正三角形中,點(diǎn),分別在線段,上,將沿線段進(jìn)行翻折,得到右圖所示的圖形,翻折后的點(diǎn)在線段上,則線段的最小值為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱的側(cè)棱垂直于底面,且,,,,是棱的中點(diǎn).(1)證明:;(2)求二面角的余弦值.18.(12分)為了解廣大學(xué)生家長對校園食品安全的認(rèn)識,某市食品安全檢測部門對該市家長進(jìn)行了一次校園食品安全網(wǎng)絡(luò)知識問卷調(diào)查,每一位學(xué)生家長僅有一次參加機(jī)會,現(xiàn)對有效問卷進(jìn)行整理,并隨機(jī)抽取出了200份答卷,統(tǒng)計這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認(rèn)為,此次問卷調(diào)查的得分服從正態(tài)分布,其中近似為這200人得分的平均值(同一組數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作為代表).(1)請利用正態(tài)分布的知識求;(2)該市食品安全檢測部門為此次參加問卷調(diào)查的學(xué)生家長制定如下獎勵方案:①得分不低于的可以獲贈2次隨機(jī)話費(fèi),得分低于的可以獲贈1次隨機(jī)話費(fèi):②每次獲贈的隨機(jī)話費(fèi)和對應(yīng)的概率為:獲贈的隨機(jī)話費(fèi)(單位:元)概率市食品安全檢測部門預(yù)計參加此次活動的家長約5000人,請依據(jù)以上數(shù)據(jù)估計此次活動可能贈送出多少話費(fèi)?附:①;②若;則,,.19.(12分)已知分別是橢圓的左、右焦點(diǎn),直線與交于兩點(diǎn),,且.(1)求的方程;(2)已知點(diǎn)是上的任意一點(diǎn),不經(jīng)過原點(diǎn)的直線與交于兩點(diǎn),直線的斜率都存在,且,求的值.20.(12分)已知中心在原點(diǎn)的橢圓的左焦點(diǎn)為,與軸正半軸交點(diǎn)為,且.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)過點(diǎn)作斜率為、的兩條直線分別交于異于點(diǎn)的兩點(diǎn)、.證明:當(dāng)時,直線過定點(diǎn).21.(12分)已知,.(1)當(dāng)時,證明:;(2)設(shè)直線是函數(shù)在點(diǎn)處的切線,若直線也與相切,求正整數(shù)的值.22.(10分)某保險公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險,現(xiàn)從名參保人員中隨機(jī)抽取名作為樣本進(jìn)行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應(yīng)交納的保費(fèi)如下表所示.據(jù)統(tǒng)計,該公司每年為這一萬名參保人員支出的各種費(fèi)用為一百萬元.年齡(單位:歲)保費(fèi)(單位:元)(1)用樣本的頻率分布估計總體分布,為使公司不虧本,求精確到整數(shù)時的最小值;(2)經(jīng)調(diào)查,年齡在之間的老人每人中有人患該項疾病(以此頻率作為概率).該病的治療費(fèi)為元,如果參保,保險公司補(bǔ)貼治療費(fèi)元.某老人年齡歲,若購買該項保險(取中的).針對此疾病所支付的費(fèi)用為元;若沒有購買該項保險,針對此疾病所支付的費(fèi)用為元.試比較和的期望值大小,并判斷該老人購買此項保險是否劃算?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

基本事件總數(shù),能表示為兩個不同費(fèi)馬素數(shù)的和只有,,,共有個,根據(jù)古典概型求出概率.【詳解】在不超過的正偶數(shù)中隨機(jī)選取一數(shù),基本事件總數(shù)能表示為兩個不同費(fèi)馬素數(shù)的和的只有,,,共有個則它能表示為兩個不同費(fèi)馬素數(shù)的和的概率是本題正確選項:【點(diǎn)睛】本題考查概率的求法,考查列舉法解決古典概型問題,是基礎(chǔ)題.2、A【解析】

先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結(jié)果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點(diǎn)睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于常考題型.3、A【解析】

根據(jù)幾何體分析正視圖和側(cè)視圖的形狀,結(jié)合題干中的數(shù)據(jù)可計算出結(jié)果.【詳解】由三視圖的性質(zhì)和定義知,三棱錐的正視圖與側(cè)視圖都是底邊長為高為的三角形,其面積都是,正視圖與側(cè)視圖的面積之和為,故選:A.【點(diǎn)睛】本題考查幾何體正視圖和側(cè)視圖的面積和,解答的關(guān)鍵就是分析出正視圖和側(cè)視圖的形狀,考查空間想象能力與計算能力,屬于基礎(chǔ)題.4、B【解析】

根據(jù)復(fù)數(shù)的乘法運(yùn)算法則,直接計算,即可得出結(jié)果.【詳解】.故選B【點(diǎn)睛】本題主要考查復(fù)數(shù)的乘法,熟記運(yùn)算法則即可,屬于基礎(chǔ)題型.5、D【解析】

甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個是正確另外兩個錯誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯誤,又三人的陳述都只對一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D【點(diǎn)睛】本題主要考查了判斷與推理的問題,重點(diǎn)是找到三人中都提到的內(nèi)容進(jìn)行分類討論,屬于基礎(chǔ)題型.6、A【解析】

由奇函數(shù)定義求出和.【詳解】因為是定義在上的奇函數(shù),.又當(dāng)時,,.故選:A.【點(diǎn)睛】本題考查函數(shù)的奇偶性,掌握奇函數(shù)的定義是解題關(guān)鍵.7、A【解析】

根據(jù)是與的等比中項,可求得,再利用等差數(shù)列求和公式即可得到.【詳解】等比數(shù)列滿足,,所以,又,所以,由等差數(shù)列的性質(zhì)可得.故選:A【點(diǎn)睛】本題主要考查的是等比數(shù)列的性質(zhì),考查等差數(shù)列的求和公式,考查學(xué)生的計算能力,是中檔題.8、D【解析】

根據(jù)題干得到點(diǎn)A坐標(biāo)為,代入拋物線得到坐標(biāo)為,再將點(diǎn)代入雙曲線得到離心率.【詳解】因為三角形OAB是等邊三角形,設(shè)直線OA為,設(shè)點(diǎn)A坐標(biāo)為,代入拋物線得到x=2b,故點(diǎn)A的坐標(biāo)為,代入雙曲線得到故答案為:D.【點(diǎn)睛】求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,結(jié)合轉(zhuǎn)化為的齊次式,然后等式(不等式)兩邊分別除以或轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式)即可得(的取值范圍).9、A【解析】

利用誘導(dǎo)公式、特殊角的三角函數(shù)值,結(jié)合對數(shù)運(yùn)算,求得所求表達(dá)式的值.【詳解】原式.故選:A【點(diǎn)睛】本小題主要考查誘導(dǎo)公式,考查對數(shù)運(yùn)算,屬于基礎(chǔ)題.10、C【解析】

建立坐標(biāo)系,寫出相應(yīng)的點(diǎn)坐標(biāo),得到的表達(dá)式,進(jìn)而得到最大值.【詳解】以D點(diǎn)為原點(diǎn),BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點(diǎn)的坐標(biāo)為:故得到故得到,故最大值為:2.故答案為C.【點(diǎn)睛】這個題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問題.通過向量的運(yùn)算,將問題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.11、C【解析】

由,和,可求得,從而求得和,再驗證選項.【詳解】因為,,所以解得,所以,所以,,,故選:C.【點(diǎn)睛】本題考查等差數(shù)列的通項公式、前項和公式,還考查運(yùn)算求解能力,屬于中檔題.12、B【解析】

由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當(dāng)且僅當(dāng)時取得最小值,此時.故選:B【點(diǎn)睛】本題主要考查了數(shù)列中的最值問題,遞推公式的應(yīng)用,基本不等式求最值,考查了學(xué)生的運(yùn)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據(jù)弦的垂直平分線經(jīng)過圓心,結(jié)合圓心所在直線方程,即可求得圓心坐標(biāo).由兩點(diǎn)間距離公式,即可得半徑.【詳解】因為圓經(jīng)過點(diǎn)則直線的斜率為所以與直線垂直的方程斜率為點(diǎn)的中點(diǎn)坐標(biāo)為所以由點(diǎn)斜式可得直線垂直平分線的方程為,化簡可得而弦的垂直平分線經(jīng)過圓心,且圓心在直線上,設(shè)圓心所以圓心滿足解得所以圓心坐標(biāo)為則圓的半徑為故答案為:【點(diǎn)睛】本題考查了直線垂直時的斜率關(guān)系,直線與直線交點(diǎn)的求法,直線與圓的位置關(guān)系,圓的半徑的求法,屬于基礎(chǔ)題.14、0【解析】

直接根據(jù)向量垂直計算得到答案.【詳解】向量與向量垂直,則,故.故答案為:.【點(diǎn)睛】本題考查了根據(jù)向量垂直求參數(shù),意在考查學(xué)生的計算能力.15、-2【解析】

由是定義在上的奇函數(shù),可知對任意的,都成立,代入函數(shù)式可求得的值.【詳解】由題意,的定義域為,,是奇函數(shù),則,即對任意的,都成立,故,整理得,解得.故答案為:.【點(diǎn)睛】本題考查奇函數(shù)性質(zhì)的應(yīng)用,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.16、【解析】

設(shè),,在中利用正弦定理得出關(guān)于的函數(shù),從而可得的最小值.【詳解】解:設(shè),,則,,∴,在中,由正弦定理可得,即,∴,∴當(dāng)即時,取得最小值.故答案為.【點(diǎn)睛】本題考查正弦定理解三角形的應(yīng)用,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2).【解析】

(1)根據(jù)平面,四邊形是矩形,由為中點(diǎn),且,利用平面幾何知識,可得,又平面,所以,根據(jù)線面垂直的判定定理可有平面,從而得證.(2)分別以,,為,,軸建立空間直角坐標(biāo)系,得到,,,,分別求得平和平面的法向量,代入二面角向量公式求解.【詳解】(1)證明:∵平面,∴四邊形是矩形,∵為中點(diǎn),且,∴,∵,,,∴.∴,∵,∴與相似,∴,∴,∴,∵,∴平面,∴平面,∵平面,∴,∴平面,∴.(2)如圖,分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,設(shè)平面的法向量為,則,,解得:,同理,平面的法向量,設(shè)二面角的大小為,則.即二面角的余弦值為.【點(diǎn)睛】本題主要考查線線垂直、線面垂直的轉(zhuǎn)化以及二面角的求法,還考查了轉(zhuǎn)化化歸的思想和推理論證、運(yùn)算求解的能力,屬于中檔題.18、(1);(2)估計此次活動可能贈送出100000元話費(fèi)【解析】

(1)根據(jù)正態(tài)分布的性質(zhì)可求的值.(2)設(shè)某家長參加活動可獲贈話費(fèi)為元,利用題設(shè)條件求出其分布列,再利用公式求出其期望后可得計此次活動可能贈送出的話費(fèi)數(shù)額.【詳解】(1)根據(jù)題中所給的統(tǒng)計表,結(jié)合題中所給的條件,可以求得又,,所以;(2)根據(jù)題意,某家長參加活動可獲贈話費(fèi)的可能值有10,20,30,40元,且每位家長獲得贈送1次、2次話費(fèi)的概率都為,得10元的情況為低于平均值,概率,得20元的情況有兩種,得分低于平均值,一次性獲20元話費(fèi);得分不低于平均值,2次均獲贈10元話費(fèi),概率,得30元的情況為:得分不低于平均值,一次獲贈10元話費(fèi),另一次獲贈20元話費(fèi),其概率為,得40元的其情況得分不低于平均值,兩次機(jī)會均獲20元話費(fèi),概率為.所以變量的分布列為:某家長獲贈話費(fèi)的期望為.所以估計此次活動可能贈送出100000元話費(fèi).【點(diǎn)睛】本題考查正態(tài)分布、離散型隨機(jī)變量的分布列及數(shù)學(xué)期望,注意與正態(tài)分布有關(guān)的計算要利用該分布的密度函數(shù)圖象的對稱性來進(jìn)行,本題屬于中檔題.19、(1)(2)【解析】

(1)不妨設(shè),,計算得到,根據(jù)面積得到,計算得到答案.(2)設(shè),,,聯(lián)立方程利用韋達(dá)定理得到,,代入化簡計算得到答案.【詳解】(1)由題意不妨設(shè),,則,.∵,∴,∴.又,∴,∴,,故的方程為.(2)設(shè),,,則.∵,∴,設(shè)直線的方程為,聯(lián)立整理得.∵在上,∴,∴上式可化為.∴,,,∴,,∴.∴.【點(diǎn)睛】本題考查了橢圓方程,定值問題,意在考查學(xué)生的計算能力和綜合應(yīng)用能力.20、(1);(2)見解析.【解析】

(1)在中,計算出的值,可得出的值,進(jìn)而可得出的值,由此可得出橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn)、,設(shè)直線的方程為,將該直線方程與橢圓方程聯(lián)立,列出韋達(dá)定理,根據(jù)已知條件得出,利用韋達(dá)定理和斜率公式化簡得出與所滿足的關(guān)系式,代入直線的方程,即可得出直線所過定點(diǎn)的坐標(biāo).【詳解】(1)在中,,,,,,,,因此,橢圓的標(biāo)準(zhǔn)方程為;(2)由題不妨設(shè),設(shè)點(diǎn),聯(lián)立,消去化簡得,且,,,,,∴代入,化簡得,化簡得,,,,直線,因此,直線過定點(diǎn).【點(diǎn)睛】本題考查橢圓方程的求解,同時也考查了橢圓中直線過定點(diǎn)的問題,考查計算能力,屬于中等題.21、(1)證明見解析;(2).【解析】

(1)令,求導(dǎo),可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論