云南省雙柏縣達標名校2024屆中考聯(lián)考數(shù)學試題含解析_第1頁
云南省雙柏縣達標名校2024屆中考聯(lián)考數(shù)學試題含解析_第2頁
云南省雙柏縣達標名校2024屆中考聯(lián)考數(shù)學試題含解析_第3頁
云南省雙柏縣達標名校2024屆中考聯(lián)考數(shù)學試題含解析_第4頁
云南省雙柏縣達標名校2024屆中考聯(lián)考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

云南省雙柏縣達標名校2024屆中考聯(lián)考數(shù)學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如果(x-2)(x+3)=x2+px+q,那么p、q的值是()A.p=5,q=6 B.p=1,q=-6 C.p=1,q=6 D.p=5,q=-62.二次函數(shù)的圖象如圖所示,則反比例函數(shù)與一次函數(shù)在同一坐標系中的大致圖象是()A. B. C. D.3.如圖,BC是⊙O的直徑,A是⊙O上的一點,∠B=58°,則∠OAC的度數(shù)是()A.32° B.30° C.38° D.58°4.如圖,正方形ABCD中,對角線AC、BD交于點O,∠BAC的平分線交BD于E,交BC于F,BH⊥AF于H,交AC于G,交CD于P,連接GE、GF,以下結(jié)論:①△OAE≌△OBG;②四邊形BEGF是菱形;③BE=CG;④﹣1;⑤S△PBC:S△AFC=1:2,其中正確的有()個.A.2 B.3 C.4 D.55.如圖所示,在△ABC中,∠C=90°,AC=4,BC=3,將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,則BD兩點間的距離為()A.2 B. C. D.6.a(chǎn)、b是實數(shù),點A(2,a)、B(3,b)在反比例函數(shù)y=﹣的圖象上,則()A.a(chǎn)<b<0 B.b<a<0 C.a(chǎn)<0<b D.b<0<a7.如圖,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是A.55° B.60° C.65° D.70°8.如圖,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足為D、E,F(xiàn)分別是CD,AD上的點,且CE=AF.如果∠AED=62°,那么∠DBF的度數(shù)為()A.62° B.38° C.28° D.26°9.下面計算中,正確的是()A.(a+b)2=a2+b2B.3a+4a=7a2C.(ab)3=ab3D.a(chǎn)2?a5=a710.如圖,四邊形ABCD是平行四邊形,點E在BA的延長線上,點F在BC的延長線上,連接EF,分別交AD,CD于點G,H,則下列結(jié)論錯誤的是()A. B. C. D.11.如圖,已知正五邊形內(nèi)接于,連結(jié),則的度數(shù)是()A. B. C. D.12.下列計算正確的是()A.3a﹣2a=1 B.a(chǎn)2+a5=a7 C.(ab)3=ab3 D.a(chǎn)2?a4=a6二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在四邊形ABCD中,點E、F分別是邊AB、AD的中點,BC=15,CD=9,EF=6,∠AFE=50°,則∠ADC的度數(shù)為_____.14.定義:在平面直角坐標系xOy中,把從點P出發(fā)沿縱或橫方向到達點Q(至多拐一次彎)的路徑長稱為P,Q的“實際距離”.如圖,若P(﹣1,1),Q(2,3),則P,Q的“實際距離”為1,即PS+SQ=1或PT+TQ=1.環(huán)保低碳的共享單車,正式成為市民出行喜歡的交通工具.設A,B,C三個小區(qū)的坐標分別為A(3,1),B(1,﹣3),C(﹣1,﹣1),若點M表示單車停放點,且滿足M到A,B,C的“實際距離”相等,則點M的坐標為_____.15.如圖,拋物線y=ax2+bx+c與x軸相交于A、B兩點,點A在點B左側(cè),頂點在折線M﹣P﹣N上移動,它們的坐標分別為M(﹣1,4)、P(3,4)、N(3,1).若在拋物線移動過程中,點A橫坐標的最小值為﹣3,則a﹣b+c的最小值是_____.16.某書店把一本新書按標價的九折出售,仍可獲利20%,若該書的進價為21元,則標價為___________元.17.對于一切不小于2的自然數(shù)n,關于x的一元二次方程x2﹣(n+2)x﹣2n2=0的兩個根記作an,bn(n≥2),則______18.關于x的一元二次方程(k-1)x2-2x+1=0有兩個不相等的實數(shù)根,則實數(shù)k的取值范圍是_______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)(問題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點A為旋轉(zhuǎn)中心將正方形ABCD旋轉(zhuǎn)60°,得到正方形AB'C'D',請直接寫出BD'平方的值.20.(6分)把0,1,2三個數(shù)字分別寫在三張完全相同的不透明卡片的正面上,把這三張卡片背面朝上,洗勻后放在桌面上,先從中隨機抽取一張卡片,記錄下數(shù)字.放回后洗勻,再從中抽取一張卡片,記錄下數(shù)字.請用列表法或樹狀圖法求兩次抽取的卡片上的數(shù)字都是偶數(shù)的概率.21.(6分)在Rt△ABC中,∠ACB=90°,以點A為圓心,AC為半徑,作⊙A交AB于點D,交CA的延長線于點E,過點E作AB的平行線EF交⊙A于點F,連接AF、BF、DF(1)求證:BF是⊙A的切線.(2)當∠CAB等于多少度時,四邊形ADFE為菱形?請給予證明.22.(8分)在平面直角坐標系中,已知點A(2,0),點B(0,2),點O(0,0).△AOB繞著O順時針旋轉(zhuǎn),得△A′OB′,點A、B旋轉(zhuǎn)后的對應點為A′、B′,記旋轉(zhuǎn)角為α.(I)如圖1,若α=30°,求點B′的坐標;(Ⅱ)如圖2,若0°<α<90°,設直線AA′和直線BB′交于點P,求證:AA′⊥BB′;(Ⅲ)若0°<α<360°,求(Ⅱ)中的點P縱坐標的最小值(直接寫出結(jié)果即可).23.(8分)已知點A、B分別是x軸、y軸上的動點,點C、D是某個函數(shù)圖象上的點,當四邊形ABCD(A、B、C、D各點依次排列)為正方形時,稱這個正方形為此函數(shù)圖象的伴侶正方形.如圖,正方形ABCD是一次函數(shù)y=x+1圖象的其中一個伴侶正方形.(1)若某函數(shù)是一次函數(shù)y=x+1,求它的圖象的所有伴侶正方形的邊長;(2)若某函數(shù)是反比例函數(shù)(k>0),它的圖象的伴侶正方形為ABCD,點D(2,m)(m<2)在反比例函數(shù)圖象上,求m的值及反比例函數(shù)解析式;(3)若某函數(shù)是二次函數(shù)y=ax2+c(a≠0),它的圖象的伴侶正方形為ABCD,C、D中的一個點坐標為(3,4).寫出伴侶正方形在拋物線上的另一個頂點坐標_____,寫出符合題意的其中一條拋物線解析式_____,并判斷你寫出的拋物線的伴侶正方形的個數(shù)是奇數(shù)還是偶數(shù)?_____.(本小題只需直接寫出答案)24.(10分)如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,點C的對應點C′恰好落在CB的延長線上,邊AB交邊C′D′于點E.(1)求證:BC=BC′;(2)若AB=2,BC=1,求AE的長.25.(10分)五一期間,小紅到郊野公園游玩,在景點P處測得景點B位于南偏東45°方向,然后沿北偏東37°方向走200m米到達景點A,此時測得景點B正好位于景點A的正南方向,求景點A與景點B之間的距離.(結(jié)果保留整數(shù))參考數(shù)據(jù):sin37≈0.60,cos37°=0.80,tan37°≈0.7526.(12分)每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新設備,現(xiàn)有甲、乙兩種型號的設備可供選購,經(jīng)調(diào)查:購買了3臺甲型設備比購買2臺乙型設備多花了16萬元,購買2臺甲型設備比購買3臺乙型設備少花6萬元.求甲、乙兩種型號設備的價格;該公司經(jīng)預算決定購買節(jié)省能源的新設備的資金不超過110萬元,你認為該公司有幾種購買方案;在(2)的條件下,已知甲型設備的產(chǎn)量為240噸/月,乙型設備的產(chǎn)量為180噸/月,若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請你為該公司設計一種最省錢的購買方案.27.(12分)丁老師為了解所任教的兩個班的學生數(shù)學學習情況,對數(shù)學進行了一次測試,獲得了兩個班的成績(百分制),并對數(shù)據(jù)(成績)進行整理、描述和分析,下面給出了部分信息.①A、B兩班學生(兩個班的人數(shù)相同)數(shù)學成績不完整的頻數(shù)分布直方圖如下(數(shù)據(jù)分成5組:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):②A、B兩班學生測試成績在80≤x<90這一組的數(shù)據(jù)如下:A班:80808283858586878787888989B班:80808181828283848485858686868787878787888889③A、B兩班學生測試成績的平均數(shù)、中位數(shù)、方差如下:平均數(shù)中位數(shù)方差A班80.6m96.9B班80.8n153.3根據(jù)以上信息,回答下列問題:補全數(shù)學成績頻數(shù)分布直方圖;寫出表中m、n的值;請你對比分析A、B兩班學生的數(shù)學學習情況(至少從兩個不同的角度分析).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

先根據(jù)多項式乘以多項式的法則,將(x-2)(x+3)展開,再根據(jù)兩個多項式相等的條件即可確定p、q的值.【詳解】解:∵(x-2)(x+3)=x2+x-1,

又∵(x-2)(x+3)=x2+px+q,

∴x2+px+q=x2+x-1,

∴p=1,q=-1.

故選:B.【點睛】本題主要考查多項式乘以多項式的法則及兩個多項式相等的條件.多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加.兩個多項式相等時,它們同類項的系數(shù)對應相等.2、D【解析】

根據(jù)拋物線和直線的關系分析.【詳解】由拋物線圖像可知,所以反比例函數(shù)應在二、四象限,一次函數(shù)過原點,應在二、四象限.故選D【點睛】考核知識點:反比例函數(shù)圖象.3、A【解析】

根據(jù)∠B=58°得出∠AOC=116°,半徑相等,得出OC=OA,進而得出∠OAC=32°,利用直徑和圓周角定理解答即可.【詳解】解:∵∠B=58°,∴∠AOC=116°,∵OA=OC,∴∠C=∠OAC=32°,故選:A.【點睛】此題考查了圓周角的性質(zhì)與等腰三角形的性質(zhì).此題比較簡單,解題的關鍵是注意數(shù)形結(jié)合思想的應用.4、C【解析】

根據(jù)AF是∠BAC的平分線,BH⊥AF,可證AF為BG的垂直平分線,然后再根據(jù)正方形內(nèi)角及角平分線進行角度轉(zhuǎn)換證明EG=EB,F(xiàn)G=FB,即可判定②選項;設OA=OB=OC=a,菱形BEGF的邊長為b,由四邊形BEGF是菱形轉(zhuǎn)換得到CF=GF=BF,由四邊形ABCD是正方形和角度轉(zhuǎn)換證明△OAE≌△OBG,即可判定①;則△GOE是等腰直角三角形,得到GE=OG,整理得出a,b的關系式,再由△PGC∽△BGA,得到=1+,從而判斷得出④;得出∠EAB=∠GBC從而證明△EAB≌△GBC,即可判定③;證明△FAB≌△PBC得到BF=CP,即可求出,從而判斷⑤.【詳解】解:∵AF是∠BAC的平分線,∴∠GAH=∠BAH,∵BH⊥AF,∴∠AHG=∠AHB=90°,在△AHG和△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是線段BG的垂直平分線,∴EG=EB,F(xiàn)G=FB,∵四邊形ABCD是正方形,∴∠BAF=∠CAF=×45°=22.5°,∠ABE=45°,∠ABF=90°,∴∠BEF=∠BAF+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°,∴∠BEF=∠BFE,∴EB=FB,∴EG=EB=FB=FG,∴四邊形BEGF是菱形;②正確;設OA=OB=OC=a,菱形BEGF的邊長為b,∵四邊形BEGF是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,∠CGF=90°,∴CF=GF=BF,∵四邊形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°,∵BH⊥AF,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠OAE=∠OBG,在△OAE和△OBG中,∴△OAE≌△OBG(ASA),①正確;∴OG=OE=a﹣b,∴△GOE是等腰直角三角形,∴GE=OG,∴b=(a﹣b),整理得a=b,∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b,∵四邊形ABCD是正方形,∴PC∥AB,∴===1+,∵△OAE≌△OBG,∴AE=BG,∴=1+,∴==1﹣,④正確;∵∠OAE=∠OBG,∠CAB=∠DBC=45°,∴∠EAB=∠GBC,在△EAB和△GBC中,∴△EAB≌△GBC(ASA),∴BE=CG,③正確;在△FAB和△PBC中,∴△FAB≌△PBC(ASA),∴BF=CP,∴====,⑤錯誤;綜上所述,正確的有4個,故選:C.【點睛】本題綜合考查了全等三角形的判定與性質(zhì),相似三角形,菱形的判定與性質(zhì)等四邊形的綜合題.該題難度較大,需要學生對有關于四邊形的性質(zhì)的知識有一系統(tǒng)的掌握.5、C【解析】解:連接BD.在△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=2.∵將△ABC繞點A逆時針旋轉(zhuǎn),使點C落在線段AB上的點E處,點B落在點D處,∴AE=4,DE=3,∴BE=2.在Rt△BED中,BD=.故選C.點睛:本題考查了勾股定理和旋轉(zhuǎn)的基本性質(zhì),解決此類問題的關鍵是掌握旋轉(zhuǎn)的基本性質(zhì),特別是線段之間的關系.題目整體較為簡單,適合隨堂訓練.6、A【解析】解:∵,∴反比例函數(shù)的圖象位于第二、四象限,在每個象限內(nèi),y隨x的增大而增大,∵點A(2,a)、B(3,b)在反比例函數(shù)的圖象上,∴a<b<0,故選A.7、C【解析】

根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形內(nèi)角和解答即可.【詳解】∵將△ABC繞點C順時針旋轉(zhuǎn)90°得到△EDC.∴∠DCE=∠ACB=20°,∠BCD=∠ACE=90°,AC=CE,∴∠ACD=90°-20°=70°,∵點A,D,E在同一條直線上,∴∠ADC+∠EDC=180°,∵∠EDC+∠E+∠DCE=180°,∴∠ADC=∠E+20°,∵∠ACE=90°,AC=CE∴∠DAC+∠E=90°,∠E=∠DAC=45°在△ADC中,∠ADC+∠DAC+∠DCA=180°,即45°+70°+∠ADC=180°,解得:∠ADC=65°,故選C.【點睛】此題考查旋轉(zhuǎn)的性質(zhì),關鍵是根據(jù)旋轉(zhuǎn)的性質(zhì)和三角形內(nèi)角和解答.8、C【解析】分析:主要考查:等腰三角形的三線合一,直角三角形的性質(zhì).注意:根據(jù)斜邊和直角邊對應相等可以證明△BDF≌△ADE.詳解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故選C.點睛:熟練運用等腰直角三角形三線合一性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半是解答本題的關鍵.9、D【解析】

直接利用完全平方公式以及合并同類項法則、積的乘方運算法則分別化簡得出答案.【詳解】A.

(a+b)2=a2+b2+2ab,故此選項錯誤;B.

3a+4a=7a,故此選項錯誤;C.

(ab)3=a3b3,故此選項錯誤;D.

a2a5=a7,正確。故選:D.【點睛】本題考查了冪的乘方與積的乘方,合并同類項,同底數(shù)冪的乘法,完全平方公式,解題的關鍵是掌握它們的概念進行求解.10、C【解析】試題解析:∵四邊形ABCD是平行四邊形,故選C.11、C【解析】

根據(jù)多邊形內(nèi)角和定理、正五邊形的性質(zhì)求出∠ABC、CD=CB,根據(jù)等腰三角形的性質(zhì)求出∠CBD,計算即可.【詳解】∵五邊形為正五邊形∴∵∴∴故選:C.【點睛】本題考查的是正多邊形和圓、多邊形的內(nèi)角和定理,掌握正多邊形和圓的關系、多邊形內(nèi)角和等于(n-2)×180°是解題的關鍵.12、D【解析】

根據(jù)合并同類項法則、積的乘方及同底數(shù)冪的乘法的運算法則依次計算后即可解答.【詳解】∵3a﹣2a=a,∴選項A不正確;∵a2+a5≠a7,∴選項B不正確;∵(ab)3=a3b3,∴選項C不正確;∵a2?a4=a6,∴選項D正確.故選D.【點睛】本題考查了合并同類項法則、積的乘方及同底數(shù)冪的乘法的運算法則,熟練運用法則是解決問題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、140°【解析】

如圖,連接BD,∵點E、F分別是邊AB、AD的中點,∴EF是△ABD的中位線,∴EF∥BD,BD=2EF=12,∴∠ADB=∠AFE=50°,∵BC=15,CD=9,BD=12,∴BC2=225,CD2=81,BD2=144,∴CD2+BD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=50°+90°=140°.故答案為:140°.14、(1,﹣2).【解析】

若設M(x,y),則由題目中對“實際距離”的定義可得方程組:3-x+1-y=y+1+x+1=1-x+3+y,解得:x=1,y=-2,則M(1,-2).故答案為(1,-2).15、﹣1.【解析】

由題意得:當頂點在M處,點A橫坐標為-3,可以求出拋物線的a值;當頂點在N處時,y=a-b+c取得最小值,即可求解.【詳解】解:由題意得:當頂點在M處,點A橫坐標為-3,則拋物線的表達式為:y=a(x+1)2+4,將點A坐標(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,當x=-1時,y=a-b+c,頂點在N處時,y=a-b+c取得最小值,頂點在N處,拋物線的表達式為:y=-(x-3)2+1,當x=-1時,y=a-b+c=-(-1-3)2+1=-1,故答案為-1.【點睛】本題考查的是二次函數(shù)知識的綜合運用,本題的核心是確定頂點在M、N處函數(shù)表達式,其中函數(shù)的a值始終不變.16、28【解析】設標價為x元,那么0.9x-21=21×20%,x=28.17、﹣.【解析】試題分析:由根與系數(shù)的關系得:,則,則,∴原式=.點睛:本題主要考查的就是一元二次方程的韋達定理以及規(guī)律的整理,屬于中等題型.解決這個問題的關鍵就是要想到使用韋達定理,然后根據(jù)計算的法則得出規(guī)律,從而達到簡便計算的目的.18、k<2且k≠1【解析】試題解析:∵關于x的一元二次方程(k-1)x2-2x+1=0有兩個不相等的實數(shù)根,∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k<2且k≠1.考點:1.根的判別式;2.一元二次方程的定義.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】

(1)依據(jù)點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據(jù)Rt△ABC中,點F為斜邊BC的中點,可得AF=CF=BF,再根據(jù)等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點A為旋轉(zhuǎn)中心將正方形ABCD逆時針旋轉(zhuǎn)60°,②以點A為旋轉(zhuǎn)中心將正方形ABCD順時針旋轉(zhuǎn)60°,分別依據(jù)旋轉(zhuǎn)的性質(zhì)以及勾股定理,即可得到結(jié)論.【詳解】(1)∵AB=AD,CB=CD,∴點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點F為斜邊BC的中點,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點A為旋轉(zhuǎn)中心將正方形ABCD逆時針旋轉(zhuǎn)60°,如圖所示:過D'作D'E⊥AB,交BA的延長線于E,由旋轉(zhuǎn)可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以點A為旋轉(zhuǎn)中心將正方形ABCD順時針旋轉(zhuǎn)60°,如圖所示:過B作BF⊥AD'于F,旋轉(zhuǎn)可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8綜上所述,BD′平方的長度為16+8或16﹣8.【點睛】本題屬于四邊形綜合題,主要考查了正方形的性質(zhì),矩形的判定,旋轉(zhuǎn)的性質(zhì),線段垂直平分線的性質(zhì)以及勾股定理的綜合運用,解決問題的關鍵是作輔助線構(gòu)造直角三角形,依據(jù)勾股定理進行計算求解.解題時注意:有三個角是直角的四邊形是矩形.20、見解析,.【解析】

畫樹狀圖展示所有9種等可能的結(jié)果數(shù),找出兩次抽取的卡片上的數(shù)字都是偶數(shù)的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:畫樹狀圖為:共有9種等可能的結(jié)果數(shù),其中兩次抽取的卡片上的數(shù)字都是偶數(shù)的結(jié)果數(shù)為4,所以兩次抽取的卡片上的數(shù)字都是偶數(shù)的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.21、(1)證明見解析;(2)當∠CAB=60°時,四邊形ADFE為菱形;證明見解析;【解析】分析(1)首先利用平行線的性質(zhì)得到∠FAB=∠CAB,然后利用SAS證得兩三角形全等,得出對應角相等即可;(2)當∠CAB=60°時,四邊形ADFE為菱形,根據(jù)∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,從而得到EF=AD=AE,利用鄰邊相等的平行四邊形是菱形進行判斷四邊形ADFE是菱形.詳解:(1)證明:∵EF∥AB∴∠FAB=∠EFA,∠CAB=∠E∵AE=AF∴∠EFA=∠E∴∠FAB=∠CAB∵AC=AF,AB=AB∴△ABC≌△ABF∴∠AFB=∠ACB=90°,∴BF是⊙A的切線.(2)當∠CAB=60°時,四邊形ADFE為菱形.理由:∵EF∥AB∴∠E=∠CAB=60°∵AE=AF∴△AEF是等邊三角形∴AE=EF,∵AE=AD∴EF=AD∴四邊形ADFE是平行四邊形∵AE=EF∴平行四邊形ADFE為菱形.點睛:本題考查了菱形的判定、全等三角形的判定與性質(zhì)及圓周角定理的知識,解題的關鍵是了解菱形的判定方法及全等三角形的判定方法,難度不大.22、(1)B'的坐標為(,3);(1)見解析;(3)﹣1.【解析】

(1)設A'B'與x軸交于點H,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°,由∠BOB'=α=30°推出BO∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;(1)證明∠BPA'=90即可;(3)作AB的中點M(1,),連接MP,由∠APB=90°,推出點P的軌跡為以點M為圓心,以MP=AB=1為半徑的圓,除去點(1,),所以當PM⊥x軸時,點P縱坐標的最小值為﹣1.【詳解】(Ⅰ)如圖1,設A'B'與x軸交于點H,∵OA=1,OB=1,∠AOB=90°,∴∠ABO=∠B'=30°,∵∠BOB'=α=30°,∴BO∥A'B',∵OB'=OB=1,∴OH=OB'=,B'H=3,∴點B'的坐標為(,3);(Ⅱ)證明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴∠OBB'=∠OA'A=(180°﹣α),∵∠BOA'=90°+α,四邊形OBPA'的內(nèi)角和為360°,∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB';(Ⅲ)點P縱坐標的最小值為.如圖,作AB的中點M(1,),連接MP,∵∠APB=90°,∴點P的軌跡為以點M為圓心,以MP=AB=1為半徑的圓,除去點(1,).∴當PM⊥x軸時,點P縱坐標的最小值為﹣1.【點睛】本題考查的知識點是幾何變換綜合題,解題的關鍵是熟練的掌握幾何變換綜合題.23、(1);(2);(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),對應的拋物線分別為;;,偶數(shù).【解析】

(1)設正方形ABCD的邊長為a,當點A在x軸負半軸、點B在y軸正半軸上時,可知3a=,求出a,

(2)作DE、CF分別垂直于x、y軸,可知ADE≌△BAO≌△CBF,列出m的等式解出m,

(3)本問的拋物線解析式不止一個,求出其中一個.【詳解】解:(1)∵正方形ABCD是一次函數(shù)y=x+1圖象的其中一個伴侶正方形.當點A在x軸正半軸、點B在y軸負半軸上時,∴AO=1,BO=1,∴正方形ABCD的邊長為,當點A在x軸負半軸、點B在y軸正半軸上時,設正方形的邊長為a,得3a=,∴,所以伴侶正方形的邊長為或;(2)作DE、CF分別垂直于x、y軸,知△ADE≌△BAO≌△CBF,此時,m<2,DE=OA=BF=mOB=CF=AE=2﹣m∴OF=BF+OB=2∴C點坐標為(2﹣m,2),∴2m=2(2﹣m)解得m=1,反比例函數(shù)的解析式為y=,(3)根據(jù)題意畫出圖形,如圖所示:過C作CF⊥x軸,垂足為F,過D作DE⊥CF,垂足為E,∴△CED≌△DGB≌△AOB≌△AFC,∵C(3,4),即CF=4,OF=3,∴EG=3,DE=4,故DG=DE﹣GE=DE﹣OF=4﹣3=1,則D坐標為(﹣1,3);設過D與C的拋物線的解析式為:y=ax2+b,把D和C的坐標代入得:,解得,∴滿足題意的拋物線的解析式為y=x2+;同理可得D的坐標可以為:(7,﹣3);(﹣4,7);(4,1),;對應的拋物線分別為;;,所求的任何拋物線的伴侶正方形個數(shù)為偶數(shù).【點睛】本題考查了二次函數(shù)的綜合題.靈活運用相關知識是解題關鍵.24、(1)證明見解析;(2)AE=.【解析】

(1)連結(jié)AC、AC′,根據(jù)矩形的性質(zhì)得到∠ABC=90°,即AB⊥CC′,根據(jù)旋轉(zhuǎn)的性質(zhì)即可得到結(jié)論;(2)根據(jù)矩形的性質(zhì)得到AD=BC,∠D=∠ABC′=90°,根據(jù)旋轉(zhuǎn)的性質(zhì)得到BC′=AD′,AD=AD′,證得BC′=AD′,根據(jù)全等三角形的性質(zhì)得到BE=D′E,設AE=x,則D′E=2﹣x,根據(jù)勾股定理列方程即可得到結(jié)論.【詳解】解::(1)連結(jié)AC、AC′,∵四邊形ABCD為矩形,∴∠ABC=90°,即AB⊥CC′,∵將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,∴AC=AC′,∴BC=BC′;(2)∵四邊形ABCD為矩形,∴AD=BC,∠D=∠ABC′=90°,∵BC=BC′,∴BC′=AD′,∵將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,∴AD=AD′,∴BC′=AD′,在△AD′E與△C′BE中∴△AD′E≌△C′BE,∴BE=D′E,設AE=x,則D′E=2﹣x,在Rt△AD′E中,∠D′=90°,由勾定理,得x2﹣(2﹣x)2=1,解得x=,∴AE=.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),三角形全等的判定和性質(zhì),勾股

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論