2025屆天一大聯(lián)考海南省數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2025屆天一大聯(lián)考海南省數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2025屆天一大聯(lián)考海南省數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2025屆天一大聯(lián)考海南省數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2025屆天一大聯(lián)考海南省數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆天一大聯(lián)考海南省數(shù)學(xué)高三第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知斜率為2的直線l過拋物線C:的焦點F,且與拋物線交于A,B兩點,若線段AB的中點M的縱坐標(biāo)為1,則p=()A.1 B. C.2 D.42.設(shè)復(fù)數(shù),則=()A.1 B. C. D.3.已知為等腰直角三角形,,,為所在平面內(nèi)一點,且,則()A. B. C. D.4.執(zhí)行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.1285.為了進一步提升駕駛?cè)私煌ò踩拿饕庾R,駕考新規(guī)要求駕校學(xué)員必須到街道路口執(zhí)勤站崗,協(xié)助交警勸導(dǎo)交通.現(xiàn)有甲、乙等5名駕校學(xué)員按要求分配到三個不同的路口站崗,每個路口至少一人,且甲、乙在同一路口的分配方案共有()A.12種 B.24種 C.36種 D.48種6.在區(qū)間上隨機取一個實數(shù),使直線與圓相交的概率為()A. B. C. D.7.設(shè),,,則()A. B. C. D.8.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對于恒成立,則的取值范圍是A. B. C. D.9.已知命題,;命題若,則,下列命題為真命題的是()A. B. C. D.10.()A. B. C. D.11.過拋物線的焦點F作兩條互相垂直的弦AB,CD,設(shè)P為拋物線上的一動點,,若,則的最小值是()A.1 B.2 C.3 D.412.音樂,是用聲音來展現(xiàn)美,給人以聽覺上的享受,熔鑄人們的美學(xué)趣味.著名數(shù)學(xué)家傅立葉研究了樂聲的本質(zhì),他證明了所有的樂聲都能用數(shù)學(xué)表達式來描述,它們是一些形如的簡單正弦函數(shù)的和,其中頻率最低的一項是基本音,其余的為泛音.由樂聲的數(shù)學(xué)表達式可知,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波.下列函數(shù)中不能與函數(shù)構(gòu)成樂音的是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,則_______.14.已知數(shù)列的前項和為且滿足,則數(shù)列的通項_______.15.已知半徑為的圓周上有一定點,在圓周上等可能地任意取一點與點連接,則所得弦長介于與之間的概率為__________.16.已知數(shù)列滿足,,若,則數(shù)列的前n項和______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知曲線:和:(為參數(shù)).以原點為極點,軸的正半軸為極軸,建立極坐標(biāo)系,且兩種坐標(biāo)系中取相同的長度單位.(1)求曲線的直角坐標(biāo)方程和的方程化為極坐標(biāo)方程;(2)設(shè)與,軸交于,兩點,且線段的中點為.若射線與,交于,兩點,求,兩點間的距離.18.(12分)已知數(shù)列中,(實數(shù)為常數(shù)),是其前項和,且數(shù)列是等比數(shù)列,恰為與的等比中項.(1)證明:數(shù)列是等差數(shù)列;(2)求數(shù)列的通項公式;(3)若,當(dāng)時,的前項和為,求證:對任意,都有.19.(12分)已知三棱錐中,為等腰直角三角形,,設(shè)點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.20.(12分)已知橢圓,點為半圓上一動點,若過作橢圓的兩切線分別交軸于、兩點.(1)求證:;(2)當(dāng)時,求的取值范圍.21.(12分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標(biāo)點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+)=1.(1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;(2)已知點M(2,0),若直線l與曲線C相交于P、Q兩點,求的值.22.(10分)在中,,是邊上一點,且,.(1)求的長;(2)若的面積為14,求的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

設(shè)直線l的方程為x=y(tǒng),與拋物線聯(lián)立利用韋達定理可得p.【詳解】由已知得F(,0),設(shè)直線l的方程為x=y(tǒng),并與y2=2px聯(lián)立得y2﹣py﹣p2=0,設(shè)A(x1,y1),B(x2,y2),AB的中點C(x0,y0),∴y1+y2=p,又線段AB的中點M的縱坐標(biāo)為1,則y0(y1+y2)=,所以p=2,故選C.【點睛】本題主要考查了直線與拋物線的相交弦問題,利用韋達定理是解題的關(guān)鍵,屬中檔題.2、A【解析】

根據(jù)復(fù)數(shù)的除法運算,代入化簡即可求解.【詳解】復(fù)數(shù),則故選:A.【點睛】本題考查了復(fù)數(shù)的除法運算與化簡求值,屬于基礎(chǔ)題.3、D【解析】

以AB,AC分別為x軸和y軸建立坐標(biāo)系,結(jié)合向量的坐標(biāo)運算,可求得點的坐標(biāo),進而求得,由平面向量的數(shù)量積可得答案.【詳解】如圖建系,則,,,由,易得,則.故選:D【點睛】本題考查平面向量基本定理的運用、數(shù)量積的運算,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運算求解能力.4、C【解析】

根據(jù)給定的程序框圖,逐次計算,結(jié)合判斷條件,即可求解.【詳解】由題意,執(zhí)行上述程序框圖,可得第1次循環(huán),滿足判斷條件,;第2次循環(huán),滿足判斷條件,;第3次循環(huán),滿足判斷條件,;第4次循環(huán),滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點睛】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的計算與輸出,其中解答中認(rèn)真審題,逐次計算,結(jié)合判斷條件求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.5、C【解析】

先將甲、乙兩人看作一個整體,當(dāng)作一個元素,再將這四個元素分成3個部分,每一個部分至少一個,再將這3部分分配到3個不同的路口,根據(jù)分步計數(shù)原理可得選項.【詳解】把甲、乙兩名交警看作一個整體,個人變成了4個元素,再把這4個元素分成3部分,每部分至少有1個人,共有種方法,再把這3部分分到3個不同的路口,有種方法,由分步計數(shù)原理,共有種方案。故選:C.【點睛】本題主要考查排列與組合,常常運用捆綁法,插空法,先分組后分配等一些基本思想和方法解決問題,屬于中檔題.6、D【解析】

利用直線與圓相交求出實數(shù)的取值范圍,然后利用幾何概型的概率公式可求得所求事件的概率.【詳解】由于直線與圓相交,則,解得.因此,所求概率為.故選:D.【點睛】本題考查幾何概型概率的計算,同時也考查了利用直線與圓相交求參數(shù),考查計算能力,屬于基礎(chǔ)題.7、A【解析】

先利用換底公式將對數(shù)都化為以2為底,利用對數(shù)函數(shù)單調(diào)性可比較,再由中間值1可得三者的大小關(guān)系.【詳解】,,,因此,故選:A.【點睛】本題主要考查了利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小,屬于基礎(chǔ)題.8、A【解析】

根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對稱又在上是增函數(shù)在上是減函數(shù),即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:【點睛】本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.9、B【解析】解:命題p:?x>0,ln(x+1)>0,則命題p為真命題,則¬p為假命題;取a=﹣1,b=﹣2,a>b,但a2<b2,則命題q是假命題,則¬q是真命題.∴p∧q是假命題,p∧¬q是真命題,¬p∧q是假命題,¬p∧¬q是假命題.故選B.10、D【解析】

利用,根據(jù)誘導(dǎo)公式進行化簡,可得,然后利用兩角差的正弦定理,可得結(jié)果.【詳解】由所以,所以原式所以原式故故選:D【點睛】本題考查誘導(dǎo)公式以及兩角差的正弦公式,關(guān)鍵在于掌握公式,屬基礎(chǔ)題.11、C【解析】

設(shè)直線AB的方程為,代入得:,由根與系數(shù)的關(guān)系得,,從而得到,同理可得,再利用求得的值,當(dāng)Q,P,M三點共線時,即可得答案.【詳解】根據(jù)題意,可知拋物線的焦點為,則直線AB的斜率存在且不為0,設(shè)直線AB的方程為,代入得:.由根與系數(shù)的關(guān)系得,,所以.又直線CD的方程為,同理,所以,所以.故.過點P作PM垂直于準(zhǔn)線,M為垂足,則由拋物線的定義可得.所以,當(dāng)Q,P,M三點共線時,等號成立.故選:C.【點睛】本題考查直線與拋物線的位置關(guān)系、焦半徑公式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意取最值的條件.12、C【解析】

由基本音的諧波的定義可得,利用可得,即可判斷選項.【詳解】由題,所有泛音的頻率都是基本音頻率的整數(shù)倍,稱為基本音的諧波,由,可知若,則必有,故選:C【點睛】本題考查三角函數(shù)的周期與頻率,考查理解分析能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由可得集合是奇數(shù)集,由此可以得出結(jié)果.【詳解】解:因為所以集合中的元素為奇數(shù),所以.【點睛】本題考查了集合的交集,解析出集合B中元素的性質(zhì)是本題解題的關(guān)鍵.14、【解析】

先求得時;再由可得時,兩式作差可得,進而求解.【詳解】當(dāng)時,,解得;由,可知當(dāng)時,,兩式相減,得,即,所以數(shù)列是首項為,公比為的等比數(shù)列,所以,故答案為:【點睛】本題考查由與的關(guān)系求通項公式,考查等比數(shù)列的通項公式的應(yīng)用.15、【解析】在圓上其他位置任取一點B,設(shè)圓半徑為R,其中滿足條件AB弦長介于與之間的弧長為?2πR,則AB弦的長度大于等于半徑長度的概率P==;故答案為:.16、【解析】

,求得的通項,進而求得,得通項公式,利用等比數(shù)列求和即可.【詳解】由題為等差數(shù)列,∴,∴,∴,∴,故答案為【點睛】本題考查求等差數(shù)列數(shù)列通項,等比數(shù)列求和,熟記等差等比性質(zhì),熟練運算是關(guān)鍵,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2)1.【解析】

(1)利用正弦的和角公式,結(jié)合極坐標(biāo)化為直角坐標(biāo)的公式,即可求得曲線的直角坐標(biāo)方程;先寫出曲線的普通方程,再利用公式化簡為極坐標(biāo)即可;(2)先求出的直角坐標(biāo),據(jù)此求得中點的直角坐標(biāo),將其轉(zhuǎn)化為極坐標(biāo),聯(lián)立曲線的極坐標(biāo)方程,即可求得兩點的極坐標(biāo),則距離可解.【詳解】(1):可整理為,利用公式可得其直角坐標(biāo)方程為:,:的普通方程為,利用公式可得其極坐標(biāo)方程為(2)由(1)可得的直角坐標(biāo)方程為,故容易得,,∴,∴的極坐標(biāo)方程為,把代入得,.把代入得,.∴,即,兩點間的距離為1.【點睛】本題考查極坐標(biāo)方程和直角坐標(biāo)方程之間的轉(zhuǎn)化,涉及參數(shù)方程轉(zhuǎn)化為普通方程,以及在極坐標(biāo)系中求兩點之間的距離,屬綜合基礎(chǔ)題.18、(1)見解析(2)(3)見解析【解析】

(1)令可得,即.得到,再利用通項公式和前n項和的關(guān)系求解,(2)由(1)知,.設(shè)等比數(shù)列的公比為,所以,再根據(jù)恰為與的等比中項求解,(3)由(2)得到時,,,求得,再代入證明?!驹斀狻浚?)解:令可得,即.所以.時,可得,當(dāng)時,所以.顯然當(dāng)時,滿足上式.所以.,所以數(shù)列是等差數(shù)列,(2)由(1)知,.設(shè)等比數(shù)列的公比為,所以,恰為與的等比中項,所以,解得,所以(3)時,,,而時,,,所以當(dāng)時,.當(dāng)時,,∴對任意,都有,【點睛】本題主要考查數(shù)列的通項公式和前n項和的關(guān)系,等差數(shù)列,等比數(shù)列的定義和性質(zhì)以及數(shù)列放縮的方法,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于難題,19、(1)證明見解析;(2)【解析】

(1)連接交于點,連接,通過證,并說明平面,來證明平面(2)采用建系法以、、所在直線分別為、、軸建立空間直角坐標(biāo)系,分別表示出對應(yīng)的點坐標(biāo),設(shè)平面的一個法向量為,結(jié)合直線對應(yīng)的和法向量,利用向量夾角的余弦公式進行求解即可【詳解】證明:如圖,連接交于點,連接,點為的中點,點為的中點,點為的重心,則,,,又平面,平面,平面;,,,,,,可得,又,則以、、所在直線分別為、、軸建立空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的一個法向量為,由,取,得.設(shè)直線與平面所成角為,則.直線與平面所成角的正弦值為.【點睛】本題考查線面平行的判定定理的使用,利用建系法來求解線面夾角問題,整體難度不大,本題中的線面夾角的正弦值公式使用廣泛,需要識記20、(1)見解析;(2).【解析】

(1)分兩種情況討論:①兩切線、中有一條切線斜率不存在時,求出兩切線的方程,驗證結(jié)論成立;②兩切線、的斜率都存在,可設(shè)切線的方程為,將該直線的方程與橢圓的方程聯(lián)立,由可得出關(guān)于的二次方程,利用韋達定理得出兩切線的斜率之積為,進而可得出結(jié)論;(2)求出點、的坐標(biāo),利用兩點間的距離公式結(jié)合韋達定理得出,換元,可得出,利用二次函數(shù)的基本性質(zhì)可求得的取值范圍.【詳解】(1)由于點在半圓上,則.①當(dāng)兩切線、中有一條切線斜率不存在時,可求得兩切線方程為,或,,此時;②當(dāng)兩切線、的斜率都存在時,設(shè)切線的方程為(、的斜率分別為、),,,,.綜上所述,;(2)根據(jù)題意得、,,令,則,所以,當(dāng)時,,當(dāng)時,.因此

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論