2025屆山東省淄博市實驗中學高三數(shù)學第一學期期末監(jiān)測試題含解析_第1頁
2025屆山東省淄博市實驗中學高三數(shù)學第一學期期末監(jiān)測試題含解析_第2頁
2025屆山東省淄博市實驗中學高三數(shù)學第一學期期末監(jiān)測試題含解析_第3頁
2025屆山東省淄博市實驗中學高三數(shù)學第一學期期末監(jiān)測試題含解析_第4頁
2025屆山東省淄博市實驗中學高三數(shù)學第一學期期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆山東省淄博市實驗中學高三數(shù)學第一學期期末監(jiān)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標系中,經(jīng)過點,漸近線方程為的雙曲線的標準方程為()A. B. C. D.2.已知F為拋物線y2=4x的焦點,過點F且斜率為1的直線交拋物線于A,B兩點,則||FA|﹣|FB||的值等于()A. B.8 C. D.43.如圖所示,三國時代數(shù)學家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機拋擲500顆米粒(米粒大小忽略不計,?。?,則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.134 B.67 C.182 D.1084.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.5.△ABC中,AB=3,,AC=4,則△ABC的面積是()A. B. C.3 D.6.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.7.已知函數(shù),若關(guān)于的方程恰好有3個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.8.據(jù)國家統(tǒng)計局發(fā)布的數(shù)據(jù),2019年11月全國CPI(居民消費價格指數(shù)),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點.下圖是2019年11月CPI一籃子商品權(quán)重,根據(jù)該圖,下列結(jié)論錯誤的是()A.CPI一籃子商品中所占權(quán)重最大的是居住B.CPI一籃子商品中吃穿住所占權(quán)重超過50%C.豬肉在CPI一籃子商品中所占權(quán)重約為2.5%D.豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為0.18%9.若的展開式中的常數(shù)項為-12,則實數(shù)的值為()A.-2 B.-3 C.2 D.310.已知是偶函數(shù),在上單調(diào)遞減,,則的解集是A. B.C. D.11.定義運算,則函數(shù)的圖象是().A. B.C. D.12.函數(shù)的圖像大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.二項式的展開式中所有項的二項式系數(shù)之和是64,則展開式中的常數(shù)項為______.14.某同學周末通過拋硬幣的方式?jīng)Q定出去看電影還是在家學習,拋一枚硬幣兩次,若兩次都是正面朝上,就在家學習,否則出去看電影,則該同學在家學習的概率為____________.15.在的展開式中,的系數(shù)為______用數(shù)字作答16.已知雙曲線的一條漸近線經(jīng)過點,則該雙曲線的離心率為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,正方體的棱長為2,為棱的中點.(1)面出過點且與直線垂直的平面,標出該平面與正方體各個面的交線(不必說明畫法及理由);(2)求與該平面所成角的正弦值.18.(12分)在極坐標系中,曲線的極坐標方程為,直線的極坐標方程為,設與交于、兩點,中點為,的垂直平分線交于、.以為坐標原點,極軸為軸的正半軸建立直角坐標系.(1)求的直角坐標方程與點的直角坐標;(2)求證:.19.(12分)已知點為橢圓上任意一點,直線與圓交于,兩點,點為橢圓的左焦點.(1)求證:直線與橢圓相切;(2)判斷是否為定值,并說明理由.20.(12分)已知函數(shù),(其中,).(1)求函數(shù)的最小值.(2)若,求證:.21.(12分)已知橢圓的左,右焦點分別為,,,M是橢圓E上的一個動點,且的面積的最大值為.(1)求橢圓E的標準方程,(2)若,,四邊形ABCD內(nèi)接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.22.(10分)橢圓:的離心率為,點為橢圓上的一點.(1)求橢圓的標準方程;(2)若斜率為的直線過點,且與橢圓交于兩點,為橢圓的下頂點,求證:對于任意的實數(shù),直線的斜率之積為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)所求雙曲線的漸近線方程為,可設所求雙曲線的標準方程為k.再把點代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設所求雙曲線的標準方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標準方程為故選:B【點睛】本題主要考查用待定系數(shù)法求雙曲線的方程,雙曲線的定義和標準方程,以及雙曲線的簡單性質(zhì)的應用,屬于基礎題.2、C【解析】

將直線方程代入拋物線方程,根據(jù)根與系數(shù)的關(guān)系和拋物線的定義即可得出的值.【詳解】F(1,0),故直線AB的方程為y=x﹣1,聯(lián)立方程組,可得x2﹣6x+1=0,設A(x1,y1),B(x2,y2),由根與系數(shù)的關(guān)系可知x1+x2=6,x1x2=1.由拋物線的定義可知:|FA|=x1+1,|FB|=x2+1,∴||FA|﹣|FB||=|x1﹣x2|=.故選C.【點睛】本題考查了拋物線的定義,直線與拋物線的位置關(guān)系,屬于中檔題.3、B【解析】

根據(jù)幾何概型的概率公式求出對應面積之比即可得到結(jié)論.【詳解】解:設大正方形的邊長為1,則小直角三角形的邊長為,

則小正方形的邊長為,小正方形的面積,

則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,

故選:B.【點睛】本題主要考查幾何概型的概率的應用,求出對應的面積之比是解決本題的關(guān)鍵.4、B【解析】

由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當;當綜上:.故選:B【點睛】本題考查了條件分支的程序框圖,考查了學生邏輯推理,分類討論,數(shù)學運算的能力,屬于基礎題.5、A【解析】

由余弦定理求出角,再由三角形面積公式計算即可.【詳解】由余弦定理得:,又,所以得,故△ABC的面積.故選:A【點睛】本題主要考查了余弦定理的應用,三角形的面積公式,考查了學生的運算求解能力.6、B【解析】

根據(jù),可知命題的真假,然后對取值,可得命題的真假,最后根據(jù)真值表,可得結(jié)果.【詳解】對命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B【點睛】本題主要考查對命題真假的判斷以及真值表的應用,識記真值表,屬基礎題.7、D【解析】

討論,,三種情況,求導得到單調(diào)區(qū)間,畫出函數(shù)圖像,根據(jù)圖像得到答案.【詳解】當時,,故,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,且;當時,;當時,,,函數(shù)單調(diào)遞減;如圖所示畫出函數(shù)圖像,則,故.故選:.【點睛】本題考查了利用導數(shù)求函數(shù)的零點問題,意在考查學生的計算能力和應用能力.8、D【解析】

A.從第一個圖觀察居住占23%,與其他比較即可.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,再判斷.C.食品占19.9%,再看第二個圖,分清2.5%是在CPI一籃子商品中,還是在食品中即可.D.易知豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為2.1%+2.5%=4.6%.【詳解】A.CPI一籃子商品中居住占23%,所占權(quán)重最大的,故正確.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,權(quán)重超過50%,故正確.C.食品占中19.9%,分解后后可知豬肉是占在CPI一籃子商品中所占權(quán)重約為2.5%,故正確.D.豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為2.1%+2.5%=4.6%,故錯誤.故選:D【點睛】本題主要考查統(tǒng)計圖的識別與應用,還考查了理解辨析的能力,屬于基礎題.9、C【解析】

先研究的展開式的通項,再分中,取和兩種情況求解.【詳解】因為的展開式的通項為,所以的展開式中的常數(shù)項為:,解得,故選:C.【點睛】本題主要考查二項式定理的通項公式,還考查了運算求解的能力,屬于基礎題.10、D【解析】

先由是偶函數(shù),得到關(guān)于直線對稱;進而得出單調(diào)性,再分別討論和,即可求出結(jié)果.【詳解】因為是偶函數(shù),所以關(guān)于直線對稱;因此,由得;又在上單調(diào)遞減,則在上單調(diào)遞增;所以,當即時,由得,所以,解得;當即時,由得,所以,解得;因此,的解集是.【點睛】本題主要考查由函數(shù)的性質(zhì)解對應不等式,熟記函數(shù)的奇偶性、對稱性、單調(diào)性等性質(zhì)即可,屬于常考題型.11、A【解析】

由已知新運算的意義就是取得中的最小值,因此函數(shù),只有選項中的圖象符合要求,故選A.12、A【解析】

根據(jù)排除,,利用極限思想進行排除即可.【詳解】解:函數(shù)的定義域為,恒成立,排除,,當時,,當,,排除,故選:.【點睛】本題主要考查函數(shù)圖象的識別和判斷,利用函數(shù)值的符號以及極限思想是解決本題的關(guān)鍵,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由二項式系數(shù)性質(zhì)求出,由二項展開式通項公式得出常數(shù)項的項數(shù),從而得常數(shù)項.【詳解】由題意,.展開式通項為,由得,∴常數(shù)項為.故答案為:.【點睛】本題考查二項式定理,考查二項式系數(shù)的性質(zhì),掌握二項展開式通項公式是解題關(guān)鍵.14、【解析】

采用列舉法計算古典概型的概率.【詳解】拋擲一枚硬幣兩次共有4種情況,即(正,正),(正,反),(反,正),(反,反),在家學習只有1種情況,即(正,正),故該同學在家學習的概率為.故答案為:【點睛】本題考查古典概型的概率計算,考查學生的基本計算能力,是一道基礎題.15、1【解析】

利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數(shù).【詳解】二項展開式的通項為令得的系數(shù)為故答案為1.【點睛】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具.16、【解析】

根據(jù)雙曲線方程,可得漸近線方程,結(jié)合題意可表示,再由雙曲線a,b,c關(guān)系表示,最后結(jié)合雙曲線離心率公式計算得答案.【詳解】因為雙曲線為,所以該雙曲線的漸近線方程為.又因為其一條漸近線經(jīng)過點,即,則,由此可得.故答案為:.【點睛】本題考查由雙曲線的漸近線構(gòu)建方程表示系數(shù)關(guān)系進而求離心率,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2).【解析】

(1)與平面垂直,過點作與平面平行的平面即可(2)建立空間直角坐標系求線面角正弦值【詳解】解:(1)截面如下圖所示:其中,,,,分別為邊,,,,的中點,則垂直于平面.(2)建立如圖所示的空間直角坐標系,則,,,,,所以,,.設平面的一個法向量為,則.不妨取,則,所以與該平面所成角的正弦值為.(若將作為該平面法向量,需證明與該平面垂直)【點睛】考查確定平面的方法以及線面角的求法,中檔題.18、(1),;(2)見解析.【解析】

(1)將曲線的極坐標方程變形為,再由可將曲線的極坐標方程化為直角坐標方程,將直線的方程與曲線的方程聯(lián)立,求出點、的坐標,即可得出線段的中點的坐標;(2)求得,寫出直線的參數(shù)方程,將直線的參數(shù)方程與曲線的普通方程聯(lián)立,利用韋達定理求得的值,進而可得出結(jié)論.【詳解】(1)曲線的極坐標方程可化為,即,將代入曲線的方程得,所以,曲線的直角坐標方程為.將直線的極坐標方程化為普通方程得,聯(lián)立,得或,則點、,因此,線段的中點為;(2)由(1)得,,易知的垂直平分線的參數(shù)方程為(為參數(shù)),代入的普通方程得,,因此,.【點睛】本題考查曲線的極坐標方程與普通方程之間的轉(zhuǎn)化,同時也考查了直線參數(shù)幾何意義的應用,涉及韋達定理的應用,考查計算能力,屬于中等題.19、(1)證明見解析;(2)是,理由見解析.【解析】

(1)根據(jù)判別式即可證明.(2)根據(jù)向量的數(shù)量積和韋達定理即可證明,需要分類討論,【詳解】解:(1)當時直線方程為或,直線與橢圓相切.當時,由得,由題知,,即,所以.故直線與橢圓相切.(2)設,,當時,,,,所以,即.當時,由得,則,,.因為.所以,即.故為定值.【點睛】本題考查橢圓的簡單性質(zhì),考查向量的運算,注意直線方程和橢圓方程聯(lián)立,運用韋達定理,考查化簡整理的運算能力,屬于中檔題.20、(1).(2)答案見解析【解析】

(1)利用絕對值不等式的性質(zhì)即可求得最小值;(2)利用分析法,只需證明,兩邊平方后結(jié)合即可得證.【詳解】(1),當且僅當時取等號,∴的最小值;(2)證明:依題意,,要證,即證,即證,即證,即證,又可知,成立,故原不等式成立.【點睛】本題考查用絕對值三角不等式求最值,考查用分析法證明不等式,在不等式不易證明時,可通過執(zhí)果索因的方法尋找結(jié)論成立的充分條件,完成證明,這就是分析法.21、(1)(2)證明見解析【解析】

(1)設橢圓E的半焦距

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論