版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆云南省曲靖市宣威市民族中學數學高三上期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知隨機變量滿足,,.若,則()A., B.,C., D.,2.集合,,則()A. B. C. D.3.羽毛球混合雙打比賽每隊由一男一女兩名運動員組成.某班級從名男生,,和名女生,,中各隨機選出兩名,把選出的人隨機分成兩隊進行羽毛球混合雙打比賽,則和兩人組成一隊參加比賽的概率為()A. B. C. D.4.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.35.已知函數,,其中為自然對數的底數,若存在實數,使成立,則實數的值為()A. B. C. D.6.若集合,,則A. B. C. D.7.已知橢圓內有一條以點為中點的弦,則直線的方程為()A. B.C. D.8.若(是虛數單位),則的值為()A.3 B.5 C. D.9.定義在R上的函數y=fx滿足fx≤2x-1A. B. C. D.10.如圖,在中,點是的中點,過點的直線分別交直線,于不同的兩點,若,,則()A.1 B. C.2 D.311.某幾何體的三視圖如圖所示,若圖中小正方形的邊長均為1,則該幾何體的體積是A. B. C. D.12.為得到函數的圖像,只需將函數的圖像()A.向右平移個長度單位 B.向右平移個長度單位C.向左平移個長度單位 D.向左平移個長度單位二、填空題:本題共4小題,每小題5分,共20分。13.已知,如果函數有三個零點,則實數的取值范圍是____________14.若函數的圖像上存在點,滿足約束條件,則實數的最大值為__________.15.已知平面向量與的夾角為,,,則________.16.已知△ABC得三邊長成公比為2的等比數列,則其最大角的余弦值為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知直線:與拋物線切于點,直線:過定點Q,且拋物線上的點到點Q的距離與其到準線距離之和的最小值為.(1)求拋物線的方程及點的坐標;(2)設直線與拋物線交于(異于點P)兩個不同的點A、B,直線PA,PB的斜率分別為,那么是否存在實數,使得?若存在,求出的值;若不存在,請說明理由.18.(12分)已知函數.(1)當時,求函數的值域;(2)的角的對邊分別為且,,求邊上的高的最大值.19.(12分)在直角坐標系中,以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的參數方程為(為參數),直線經過點且傾斜角為.(1)求曲線的極坐標方程和直線的參數方程;(2)已知直線與曲線交于,滿足為的中點,求.20.(12分)已知函數.(1)討論的單調性;(2)若,設,證明:,,使.21.(12分)設函數().(1)討論函數的單調性;(2)若關于x的方程有唯一的實數解,求a的取值范圍.22.(10分)在△ABC中,角A,B,C的對邊分別為a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據二項分布的性質可得:,再根據和二次函數的性質求解.【詳解】因為隨機變量滿足,,.所以服從二項分布,由二項分布的性質可得:,因為,所以,由二次函數的性質可得:,在上單調遞減,所以.故選:B【點睛】本題主要考查二項分布的性質及二次函數的性質的應用,還考查了理解辨析的能力,屬于中檔題.2、A【解析】
解一元二次不等式化簡集合A,再根據對數的真數大于零化簡集合B,求交集運算即可.【詳解】由可得,所以,由可得,所以,所以,故選A.【點睛】本題主要考查了集合的交集運算,涉及一元二次不等式解法及對數的概念,屬于中檔題.3、B【解析】
根據組合知識,計算出選出的人分成兩隊混合雙打的總數為,然后計算和分在一組的數目為,最后簡單計算,可得結果.【詳解】由題可知:分別從3名男生、3名女生中選2人:將選中2名女生平均分為兩組:將選中2名男生平均分為兩組:則選出的人分成兩隊混合雙打的總數為:和分在一組的數目為所以所求的概率為故選:B【點睛】本題考查排列組合的綜合應用,對平均分組的問題要掌握公式,比如:平均分成組,則要除以,即,審清題意,細心計算,考驗分析能力,屬中檔題.4、A【解析】
由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點睛】本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎.5、A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數,(﹣1,+∞)上是增函數,故當x=﹣1時,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當且僅當ex﹣a=4ea﹣x,即x=a+ln1時,等號成立);故f(x)﹣g(x)≥3(當且僅當等號同時成立時,等號成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.6、C【解析】
解一元次二次不等式得或,利用集合的交集運算求得.【詳解】因為或,,所以,故選C.【點睛】本題考查集合的交運算,屬于容易題.7、C【解析】
設,,則,,相減得到,解得答案.【詳解】設,,設直線斜率為,則,,相減得到:,的中點為,即,故,直線的方程為:.故選:.【點睛】本題考查了橢圓內點差法求直線方程,意在考查學生的計算能力和應用能力.8、D【解析】
直接利用復數的模的求法的運算法則求解即可.【詳解】(是虛數單位)可得解得本題正確選項:【點睛】本題考查復數的模的運算法則的應用,復數的模的求法,考查計算能力.9、D【解析】
根據y=fx+1為奇函數,得到函數關于1,0中心對稱,排除AB,計算f1.5≤【詳解】y=fx+1為奇函數,即fx+1=-f-x+1,函數關于f1.5≤2故選:D.【點睛】本題考查了函數圖像的識別,確定函數關于1,0中心對稱是解題的關鍵.10、C【解析】
連接AO,因為O為BC中點,可由平行四邊形法則得,再將其用,表示.由M、O、N三點共線可知,其表達式中的系數和,即可求出的值.【詳解】連接AO,由O為BC中點可得,,、、三點共線,,.故選:C.【點睛】本題考查了向量的線性運算,由三點共線求參數的問題,熟記向量的共線定理是關鍵.屬于基礎題.11、B【解析】該幾何體是直三棱柱和半圓錐的組合體,其中三棱柱的高為2,底面是高和底邊均為4的等腰三角形,圓錐的高為4,底面半徑為2,則其體積為,.故選B點睛:由三視圖畫出直觀圖的步驟和思考方法:1、首先看俯視圖,根據俯視圖畫出幾何體地面的直觀圖;2、觀察正視圖和側視圖找到幾何體前、后、左、右的高度;3、畫出整體,然后再根據三視圖進行調整.12、D【解析】,所以要的函數的圖象,只需將函數的圖象向左平移個長度單位得到,故選D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
首先把零點問題轉化為方程問題,等價于有三個零點,兩側開方,可得,即有三個零點,再運用函數的單調性結合最值即可求出參數的取值范圍.【詳解】若函數有三個零點,即零點有,顯然,則有,可得,即有三個零點,不妨令,對于,函數單調遞增,,,所以函數在區(qū)間上只有一解,對于函數,,解得,,解得,,解得,所以函數在區(qū)間上單調遞減,在區(qū)間上單調遞增,,當時,,當時,,此時函數若有兩個零點,則有,綜上可知,若函數有三個零點,則實數的取值范圍是.故答案為:【點睛】本題考查了函數零點的零點,恰當的開方,轉化為函數有零點問題,注意恰有三個零點條件的應用,根據函數的最值求解參數的范圍,屬于難題.14、1【解析】由題知x>0,且滿足約束條件的圖象為由圖可知當與交于點B(2,1),當直線過B點時,m取得最大值為1.點睛:線性規(guī)劃的實質是把代數問題幾何化,即數形結合的思想.需要注意的是:一、準確無誤地作出可行域;二、畫標準函數所對應的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三、一般情況下,目標函數的最大或最小會在可行域的端點或邊界上取得.15、【解析】
根據已知求出,利用向量的運算律,求出即可.【詳解】由可得,則,所以.故答案為:【點睛】本題考查向量的模、向量的數量積運算,考查計算求解能力,屬于基礎題.16、-【解析】試題分析:根據題意設三角形的三邊長分別設為為a,2a,2a,∵2a>2a>a,∴2a所對的角為最大角,設為θ,則根據余弦定理得考點:余弦定理及等比數列的定義.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),(1,2);(2)存在,【解析】
(1)由直線恒過點點及拋物線C上的點到點Q的距離與到準線的距離之和的最小值為,求出拋物線的方程,再由直線與拋物線相切,即可求得切點的坐標;(2)直線與拋物線方程聯立,利用根與系數的關系,求得直線PA,PB的斜率,求出斜率之和為定值,即存在實數使得斜率之和為定值.【詳解】(1)由題意,直線變?yōu)?x+1-m(2y+1)=0,所以定點Q的坐標為拋物線的焦點坐標,由拋物線C上的點到點Q的距離與到其焦點F的距離之和的最小值為,可得,解得或(舍去),故拋物線C的方程為又由消去y得,因為直線與拋物線C相切,所以,解得,此時,所以點P坐標為(1,2)(2)設存在滿足條件的實數,點,聯立,消去x得,則,依題意,可得,解得m<-1或,由(1)知P(1,2),可得,同理可得,所以=,故存在實數=滿足條件.【點睛】本題主要考查拋物線方程的求解、及直線與圓錐曲線的位置關系的綜合應用,解答此類題目,通常聯立直線方程與拋物線方程,應用一元二次方程根與系數的關系進行求解,此類問題易錯點是復雜式子的變形能力不足,導致錯解,能較好的考查考生的邏輯思維能力、運算求解能力、分析問題解決問題的能力等.18、(1).(2)【解析】
(1)由題意利用三角恒等變換化簡函數的解析式,再利用正弦函數的定義域和值域,得出結論.(2)由題意利用余弦定理?三角形的面積公式?基本不等式求得的最大值,可得邊上的高的最大值.【詳解】解:(1)∵函數,當時,,.(2)中,,∴.由余弦定理可得,當且僅當時,取等號,即的最大值為3.再根據,故當取得最大值3時,取得最大值為.【點睛】本題考查降冪公式、兩角和的正弦公式,考查正弦函數的性質,余弦定理,三角形面積公式,所用公式較多,選用恰當的公式是解題關鍵,本題屬于中檔題.19、(1),;(2).【解析】
(1)由曲線的參數方程消去參數可得曲線的普通方程,由此可求曲線的極坐標方程;直接利用直線的傾斜角以及經過的點求出直線的參數方程即可;(2)將直線的參數方程,代入曲線的普通方程,整理得,利用韋達定理,根據為的中點,解出即可.【詳解】(1)由(為參數)消去參數,可得,即,已知曲線的普通方程為,,,,即,曲線的極坐標方程為,直線經過點,且傾斜角為,直線的參數方程:(為參數,).(2)設對應的參數分別為,.將直線的參數方程代入并整理,得,,.又為的中點,,,,,即,,,,即,.【點睛】本題考查了圓的參數方程與極坐標方程之間的互化以及直線參數方程的應用,考查了計算能力,屬于中檔題.20、(1)見解析;(2)證明見解析.【解析】
(1),分,,,四種情況討論即可;(2)問題轉化為,利用導數找到與即可證明.【詳解】(1).①當時,恒成立,當時,;當時,,所以,在上是減函數,在上是增函數.②當時,,.當時,;當時,;當時,,所以,在上是減函數,在上是增函數,在上是減函數.③當時,,則在上是減函數.④當時,,當時,;當時,;當時,,所以,在上是減函數,在上是增函數,在上是減函數.(2)由題意,得.由(1)知,當,時,,.令,,故在上是減函數,有,所以,從而.,,則,令,顯然在上是增函數,且,,所以存在使,且在上是減函數,在上是增函數,,所以,所以,命題成立.【點睛】本題考查利用導數研究函數的單調性以及證明不等式的問題,考查學生邏輯推理能力,是一道較難的題.21、(1)當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2)或.【解析】
(1)求出,對分類討論,先考慮(或)恒成立的范圍,并以此作為的分類標準,若不恒成立,求解,即可得出結論;(2)有解,即,令,轉化求函數只有一個實數解,根據(1)中的結論,即可求解.【詳解】(1),當時,恒成立,當時,,綜上,當時,遞增區(qū)間時,無遞減區(qū)間,當時,遞增區(qū)間時,遞減區(qū)間時;(2),令,原方程只有一個解,只需只有一個解,即求只有一個零點時,的取值范圍,由(1)得當時,在單調遞增,且,函數只有一個零點,原方
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit 4 Living with technology Reading 1 說課稿-2024-2025學年高中英語牛津譯林版(2020)選擇性必修第二冊
- 全國粵教版信息技術七年級下冊第二章第四節(jié)《制作樓道自動感應燈》說課稿
- 湖南省衡陽縣第四中學2024-2025學年高二上學期期末考試語文試卷(含答案)
- 第二次月考測評卷 Lesson 4 ~ 6 綜合測評卷(含答案)-2024-2025學年科普版(三起)英語四年級上冊
- 湖南省永州市2024-2025學年高一上學期期末質量監(jiān)測政治試題(含答案)
- 貴州省六盤水市(2024年-2025年小學六年級語文)部編版小升初真題(下學期)試卷及答案
- 二零二五年度假山景區(qū)門票銷售與運營承包合同3篇
- 2024秋季分管黨建和德育安全副校長工作總結:乘風破浪砥礪前行
- 全國江西科學技術版小學信息技術四年級上冊第一單元第3課《常見的數據類型》說課稿
- 中國船級社規(guī)范 海底管道系統(tǒng)規(guī)范 2021
- 金屬的拉伸實驗(實驗報告)
- 鍋爐定期檢驗
- 普通話課件(完整版)
- 品管圈QCC質量持續(xù)改進案例胃腸外科-落實胃腸腫瘤患者術后早期下床活動PDCA
- 人員密集場所安全風險源辨識清單
- GB/T 39335-2020信息安全技術個人信息安全影響評估指南
- 比較文學概論馬工程課件 第6章
- GB/T 19631-2005玻璃纖維增強水泥輕質多孔隔墻條板
- GB/T 11352-2009一般工程用鑄造碳鋼件
- 冠心病診斷與治療課件
- 新疆少數民族發(fā)展史課件
評論
0/150
提交評論