版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
博弈論與信息經(jīng)濟學
(GameTheoryandInformationEconomics)主要內(nèi)容簡介第一章概述-人生處處皆博弈第一篇非合作博弈理論第二章完全信息靜態(tài)信息博弈-納什均衡第三章完全信息動態(tài)搏弈-子博弈精煉納什均衡第四章不完全信息靜態(tài)博弈-貝葉斯納什均衡第五章不完全信息動態(tài)博弈-精練貝葉斯納什均衡第二篇信息經(jīng)濟學
第六章委托-代理理論(I)第七章委托-代理理論(II)第八章逆向選擇與信號傳遞
主要內(nèi)容簡介第二章完全信息靜態(tài)信息博弈-納什均衡一博弈的基本概念及戰(zhàn)略表述二占優(yōu)戰(zhàn)略均衡三重復(fù)剔除的占優(yōu)均衡四納什均衡五納什均衡應(yīng)用舉例二占優(yōu)戰(zhàn)略均衡案例1-囚徒困境-8,-80,-10-10,0-1,-1囚徒A囚徒B坦白抵賴坦白抵賴抵賴是A的嚴格劣戰(zhàn)略抵賴是B的嚴格劣戰(zhàn)略三重復(fù)剔除的占優(yōu)均衡
5,14,49,-10,0等待小豬大豬按等待按案例2-智豬博弈按是小豬的嚴格劣戰(zhàn)略-剔除4大于10大于-1“按”是大豬的占優(yōu)戰(zhàn)略,納什均衡:大豬按,小豬等待四納什均衡尋找納什均衡0,44,05,34,00,45,33,53,56,6C2R1R2C1C3R3參與人B參與人A(R3,C3)是納什均衡四納什均衡練習:投票博弈:假定有三個參與人(1,2和3)要在三個項目(A,B和C)中投票選擇一個,三個參與人同時投票,不允許棄權(quán),因此戰(zhàn)略空間為Si=(A,B,C)。得票最多的項目被選中,如果沒有任何項目得到多數(shù)票,項目A被選中,參與人的支付函數(shù)如下:u1(A)=u2(B)=u3(C)u1(B)=u2(C)=u3(A)u1(C)=u2(A)=u3(B)找出這個博弈中所有的納什均衡。五混合戰(zhàn)略納什均衡社會福利博弈
23,
3-1,1-1,00,流浪流浪漢政府救濟不救濟尋找工作沒有一個戰(zhàn)略組合構(gòu)成納什均衡五混合戰(zhàn)略納什均衡社會福利博弈
23,
3-1,1-1,00,流浪流浪漢政府救濟不救濟尋找工作設(shè):政府救濟的概率:1/2;不救濟的概率:1/2。流浪漢:尋找工作的概率:0.2;流浪的概率:0.8每個參與人的戰(zhàn)略都是給定對方混合戰(zhàn)略時的最優(yōu)戰(zhàn)略五混合戰(zhàn)略納什均衡戰(zhàn)略:參與人在給定信息集的情況下選擇行動的規(guī)則,它規(guī)定參與人在什么情況下選擇什么行動,是參與人的“相機行動方案”。純戰(zhàn)略:如果一個戰(zhàn)略規(guī)定參與人在每一個給定的信息情況下只選擇一種特定的行動,該戰(zhàn)略為
純戰(zhàn)略。混合戰(zhàn)略:如果一個戰(zhàn)略規(guī)定參與人在給定信息情況下以某種概率分布隨機地選擇不同的行動,則該戰(zhàn)略為混合戰(zhàn)略。五混合戰(zhàn)略納什均衡純戰(zhàn)略可以理解為混合戰(zhàn)略的特例,即在諸多戰(zhàn)略中,選該純戰(zhàn)略si的概率為1,選其他純戰(zhàn)略的概率為0。5,14,49,-10,0等待小豬大豬按等待按
1-1,
-11,-11,1-1,反面正面反面正面五混合戰(zhàn)略納什均衡
23,
3-1,1-1,00,流浪流浪漢政府救濟不救濟尋找工作即:流浪漢以0.2的概率選擇尋找工作,0.8的概率選擇游蕩同樣,可以根據(jù)流浪漢的期望效用函數(shù)找到政府的最優(yōu)混合戰(zhàn)略。??支付最大化法五混合戰(zhàn)略納什均衡社會福利博弈
23,
3-1,1-1,00,流浪流浪漢政府救濟不救濟尋找工作設(shè):政府救濟的概率:1/2;不救濟的概率:1/2。流浪漢:尋找工作的概率:0.2;流浪的概率:0.8每個參與人的戰(zhàn)略都是給定對方混合戰(zhàn)略時的最優(yōu)戰(zhàn)略五混合戰(zhàn)略納什均衡假定最優(yōu)混合戰(zhàn)略存在,給定流浪漢選擇混合戰(zhàn)略(r,1-r),政府選擇純戰(zhàn)略救濟的期望效用為:
3r+(-1)(1-r)=4r-1選擇純戰(zhàn)略不救濟的效用為:-1r+0(1-r)=-r如果一個混合戰(zhàn)略(而不是純戰(zhàn)略)是政府的最優(yōu)選擇,一定意味著政府在救濟與不救濟之間是無差異的。4r-1=-rr=0.2
23,
3-1,1-1,00,流浪流浪漢政府救濟不救濟尋找工作支付等值法五混合戰(zhàn)略納什均衡社會福利博弈
23,
3-1,1-1,00,流浪流浪漢政府救濟不救濟尋找工作設(shè):政府救濟的概率:1/2;不救濟的概率:1/2。流浪漢:尋找工作的概率:0.2;流浪的概率:0.8每個參與人的戰(zhàn)略都是給定對方混合戰(zhàn)略時的最優(yōu)戰(zhàn)略五混合戰(zhàn)略納什均衡對的解釋:如果流浪漢以找工作的概率小于0.2,則政府選擇不救濟,如果大于0.2,政府選擇救濟,只有當概率等于0.2時,政府才會選擇混合戰(zhàn)略或任何純戰(zhàn)略.對*=0.5的解釋如果政府救濟的概率大于0.5,流浪漢的最優(yōu)選擇是流浪,如果政府救濟的概率小于0.5,流浪漢的最優(yōu)選擇是尋找工作.五混合戰(zhàn)略納什均衡混合戰(zhàn)略納什均衡的含義:納什均衡要求每個參與人的混合戰(zhàn)略是給定對方的混合戰(zhàn)略下的最優(yōu)選擇。因此在社會福利博弈中,,*=0.5是唯一的混合戰(zhàn)略納什均衡。從反面來說,如果政府認為流浪漢選擇尋找工作的概率嚴格小于0.2,那么政府的唯一最優(yōu)選擇是純戰(zhàn)略:不救濟;如果政府以1的概率選擇不救濟,流浪漢的最優(yōu)選擇是尋找工作,這又將導(dǎo)致政府選擇救濟的戰(zhàn)略,流浪漢則選擇游蕩。如此等等。流浪漢尋找工作的概率小于0.2政府概率為1:不救濟流浪漢尋找工作政府救濟五混合戰(zhàn)略納什均衡練習:模型化下述劃拳博弈:兩個老朋友在一起喝酒,每個人有四個純戰(zhàn)略:杠子、老虎、雞和蟲子,輸贏規(guī)則是:杠子降雞,雞吃蟲子,蟲子降杠子,兩人同時出令。如果一個打敗另一個,贏的效用為1,輸?shù)男в脼?1,否則效用為0,寫出這個博弈的支付矩陣,這個博弈有純戰(zhàn)略均衡嗎?計算其混合戰(zhàn)略納什均衡。六納什均衡存在性及相關(guān)討論不同均衡概念的關(guān)系占優(yōu)均衡DSE重復(fù)剔除占優(yōu)均衡IEDE純戰(zhàn)略納什均衡PNE混合戰(zhàn)略納什均衡MNE六納什均衡存在性及相關(guān)討論納什均衡存在性定理:每一個有限博弈至少存在一個納什均衡(純戰(zhàn)略的或混合戰(zhàn)略的)。六納什均衡存在性及相關(guān)討論一個博弈可能有多個均衡:兩個人分蛋糕;性別戰(zhàn)中的博弈;……納什均衡的多重性:博弈論并沒有一個一般的理論證明納什均衡結(jié)果一定能出現(xiàn)2,10,00,01,2芭蕾女男足球芭蕾足球六納什均衡存在性及相關(guān)討論如何保證均衡出現(xiàn):1、“聚點”均衡:參與人可以使用某些被抽象掉的信息達到一個“聚點均衡”。兩個人分蛋糕;性別戰(zhàn)中的博弈;兩人同時給對方打電話……六納什均衡存在性及相關(guān)討論2、廉價磋商-“協(xié)調(diào)博弈”盡管無法保證磋商會達成一個協(xié)議,即使達成協(xié)議也不一定會被遵守,但在一些博弈中,事前磋商確實可以使某些均衡實際上出現(xiàn)。9,90,00,01,1RBAUDL9,90,88,07,7RBAUDL聚點六納什均衡存在性及相關(guān)討論獵人博弈和帕累托優(yōu)勢:10,100,44,04,4打兔獵人乙獵人甲獵鹿打兔獵鹿有兩個納什均衡:(10,10)與(4,4);可以認為:(10,10)比(4,4)有帕累托優(yōu)勢六納什均衡存在性及相關(guān)討論大流士陰謀推翻波斯王國的故事:當時,一群波斯貴族聚在一起決定推翻國王,其間有人提議休會,大流士此時站出來大聲疾呼,說如果休會的話,就一定會有人去國王那里告密,因為如果別人不那么做的話,他自己就會去做,大流士說唯一的辦法就是沖進皇宮,殺死國王。這個謀反的故事還提供了關(guān)于協(xié)調(diào)博弈的出路。在殺死國王之后,貴族們想從自己人中推選出一個人當國王,他們決定不自相殘殺,而是在佛曉十分到山上去,誰的馬先叫誰就當國王。大流士的馬夫在這場隨機的安排中做了手腳,從而成為國王。六納什均衡存在性及相關(guān)討論3、學習過程假定博弈重復(fù)多次,即使參與人最初難以協(xié)調(diào)行動,在博弈若干次后,某種特定的協(xié)調(diào)模式可能會形成,特別地,假定參與人每一輪根據(jù)其對手以前的“平均”戰(zhàn)略來選擇自己的最優(yōu)戰(zhàn)略,博弈可能收斂于一個納什均衡。納什均衡應(yīng)用舉例諾貝爾經(jīng)濟學獎獲得者薩繆爾森有一句話:你可以將一只鸚鵡訓(xùn)練成一個經(jīng)濟學家,因為它只需要學習兩個詞:供給和需求。博弈論專家坎多瑞引申說:要成為現(xiàn)代經(jīng)濟學家,這只鸚鵡必須再多學一個詞,就是“納什均衡”。納什均衡應(yīng)用舉例案例1庫諾特(Cournot)寡頭競爭模型案例2公共地的悲劇案例3普林斯頓大學的一道習題案例1庫諾特(Cournot)寡頭競爭模型企業(yè)1企業(yè)2參與人:企業(yè)1、企業(yè)2戰(zhàn)略:選擇產(chǎn)量支付:利潤,利潤是兩個企業(yè)產(chǎn)量的函數(shù)案例1庫諾特(Cournot)寡頭競爭模型qi:第i個企業(yè)的產(chǎn)量Ci(qi)代表成本函數(shù)P=P(q1+q2):價格是兩個企業(yè)產(chǎn)量的函數(shù)第i個企業(yè)的利潤函數(shù)為:企業(yè)1企業(yè)2案例1庫諾特(Cournot)寡頭競爭模型(q1*,q2*)是納什均衡意味著:
找出納什均衡的方法是對每個企業(yè)的利潤函數(shù)求一階導(dǎo)數(shù),使其為0。案例1庫諾特(Cournot)寡頭競爭模型q2q1每個企業(yè)的最優(yōu)產(chǎn)量是另一個企業(yè)的產(chǎn)量的函數(shù)。交叉點即納什均衡點案例1庫諾特(Cournot)寡頭競爭模型假定每個企業(yè)有不變的單位成本:假定需求函數(shù)為:最優(yōu)化的一階條件是:解反應(yīng)函數(shù)得納什均衡為:壟斷利潤為:案例1庫諾特(Cournot)寡頭競爭模型為什么說庫諾特(Cournot)寡頭競爭模型是典型的囚徒困境問題?壟斷企業(yè)的問題:壟斷企業(yè)的最優(yōu)產(chǎn)量:壟斷利潤為:寡頭競爭的總產(chǎn)量大于壟斷產(chǎn)量的原因是:每個企業(yè)在選擇自己的最優(yōu)產(chǎn)量時,只考慮對本企業(yè)利潤的影響,而忽視了對另外一個企業(yè)的外部負效應(yīng)。案例1庫諾特(Cournot)寡頭競爭模型練習:假定有n個庫諾特寡頭企業(yè),每個企業(yè)具有相同的不變單位成本c,市場逆需求函數(shù)p=a-Q,其中p是市場價格,是總供給量,a是大于0的常數(shù),企業(yè)的戰(zhàn)略是選擇產(chǎn)量qi最大化利潤,給定其他企業(yè)的產(chǎn)量q-i,,求庫諾特-納什均衡,均衡產(chǎn)量和價格如何隨n的變化而變化?為什么?納什均衡應(yīng)用舉例案例1庫諾特(Cournot)寡頭競爭模型案例2公共地的悲劇案例3普林斯頓大學的一道習題案例2公共地的悲劇公共地的悲劇證明:如果一種資源沒有排他性的所有權(quán),就會導(dǎo)致資源的過度使用。公海捕魚小煤窯的過度發(fā)展……案例2公共地的悲劇有n個農(nóng)民的村莊共同擁有一片草地,每個農(nóng)民都有在草地上放牧的自由。每年春天,農(nóng)民要決定自己養(yǎng)多少只養(yǎng)。gi:第i個農(nóng)民飼養(yǎng)的數(shù)量,i=1,2,…,n.
n個農(nóng)民飼養(yǎng)的總量V:代表每只羊的平均價值,v是G的函數(shù),v=v(G),因為每只羊至少要一定數(shù)量的草才不至于餓死,有一個最大的可存活量Gmax,:
當G<Gmax時,v(G)>0;當G>=G(x)時,v(G)=0。案例2公共地的悲劇當草地上羊很少時,增加一只羊也許不會對其他羊的價值有太大影響,但隨著羊的不斷增加,每只羊的價值將急劇下降。GGmaxv參與人:農(nóng)民戰(zhàn)略:養(yǎng)羊的數(shù)量支付:利潤案例2公共地的悲劇假設(shè)一只羊的價格為c,對于農(nóng)民i來講,其利潤函數(shù)為:最優(yōu)化的一階條件為:上述一階條件可以解釋為:增加一只羊有正負兩方面的效應(yīng),正的效應(yīng)是這只羊本身的價值v,負的效應(yīng)是這只羊使所有之前的羊的價值降低。案例2公共地的悲劇其最優(yōu)解滿足邊際收益等于邊際成本:上述n個一階條件定義了n個反應(yīng)函數(shù):因為:所以:案例2公共地的悲劇第i個農(nóng)民的最優(yōu)飼養(yǎng)量隨其他農(nóng)民的飼養(yǎng)量增加而遞減。n個反應(yīng)函數(shù)的交叉點就是納什均衡。盡管每個農(nóng)民在決定自己增加飼養(yǎng)量時考慮了對現(xiàn)有羊價值的影響,但是他考慮的只是對自己羊的影響,而并不是對所有羊的影響,因此,最優(yōu)點上的個人邊際成本小于社會邊際成本,納什均衡總飼養(yǎng)量大于社會最優(yōu)飼養(yǎng)量。納什均衡應(yīng)用舉例案例1庫諾特(Cournot)寡頭競爭模型案例2公共地的悲劇案例3普林斯頓大學的一道習題納什均衡應(yīng)用舉例如果給你兩個師的兵力,由你來當“司令”,任務(wù)是攻克“敵人”占據(jù)的一座城市,規(guī)定雙方的兵力只能整師調(diào)動。通往城市的道路只有甲乙兩條,當你發(fā)起攻擊的時候,你的兵力超過敵人,你就獲勝,你的兵力比敵人的守備兵力少或者相等,你就失敗,那么你將怎樣部署你的攻城方案?納什均衡應(yīng)用舉例敵人:四種部署方案A三個師都駐守甲方;B兩個師駐守甲方,一個師駐守乙方C一個師駐守甲方,兩個師駐守乙方D三個師都駐守乙方我軍:a集中全部兵力從甲方進攻b兵分兩路,一個從甲方,一個從乙方,同時進攻c集中兵力從乙方進攻納什均衡應(yīng)用舉例敵人:四種部署方案A三個師都駐守甲方;B兩個師駐守甲方,一個師駐守乙方C一個師駐守甲方,兩個師駐守乙方D三個師都駐守乙方我軍:a集中全部兵力從甲方進攻b兵分兩路,一個從甲方,一個從乙方,同時進攻c集中兵力從乙方進攻ABCDabc納什均衡應(yīng)用舉例-+-++-+-+--+-++-+-+--+
-+ABCDabc敵軍我軍樹立質(zhì)量法制觀念、提高全員質(zhì)量意識。10月-2410月-24Wednesday,October16,2024人生得意須盡歡,莫使金樽空對月。13:35:0413:35:0413:3510/16/20241:35:04PM安全象只弓,不拉它就松,要想保安全,常把弓弦繃。10月-2413:35:0413:35Oct-2416-Oct-24加強交通建設(shè)管理,確保工程建設(shè)質(zhì)量。13:35:0413:35:0413:35Wednesday,October16,2024安全在于心細,事故出在麻痹。10月-2410月-2413:35:0413:35:04October16,2024整頓-提高工作效率。2024年10月16日1:35下午10月-2410月-24追求至善憑技術(shù)開拓市場,憑管理增創(chuàng)效益,憑服務(wù)樹立形象。16十月20241:35:04下午13:35:0410月-24按章操作莫亂改,合理建議提出來。十月241:35下午10月-2413:35October16,2024作業(yè)標準記得牢,駕輕就熟除煩惱。2024/10/1613:35:0413:35:0416October2024好的事情馬上就會到來,一切都是最好的安排。1:35:04下午1:35下午13:35:0410月-24一馬當先,全員舉績,梅開二度,業(yè)績保底。10月-2410月-2413:3513:35:0413:35:04Oct-24牢記安全之責,善謀安全之策,力務(wù)安全之實。2024/10/1613:35:04Wednesday,October16,2024創(chuàng)新突破穩(wěn)定品質(zhì),落實管理提高效率。10月-242024/10/1613:35:0410月-24謝謝大家!生活中的辛苦阻
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《籃球訓(xùn)練對少年兒童身體形態(tài)及身體素質(zhì)影響的研究》
- 《我國資源環(huán)境承載力評價研究》
- 游樂場安全隱患排查治理工作方案
- 機械制造車間設(shè)備維護制度
- 造紙行業(yè)設(shè)備維護管理制度
- 腫瘤手術(shù)應(yīng)急預(yù)案設(shè)計
- 成都地鐵口非機動車停放調(diào)研報告
- 旅游景區(qū)疫情防控應(yīng)急措施
- 速凍食品抽樣檢驗方案
- 建筑工地安全保障措施方案
- 控制三高健康生活遠離心腦血管疾病課件(模板)
- 光學相干斷層成像(OCT)在冠狀動脈介入診斷與治療中的應(yīng)用課件
- 模擬法庭案例腳本:校園欺凌侵權(quán)案 社會法治
- 四年級上冊美術(shù)教案-14漂亮的房間 |蘇少版
- 05 03 第五章第三節(jié) 投身崇德向善的道德實踐
- 安徽省合肥市第四十五中學2022-2023學年九年級上學期數(shù)學期中考試卷
- 樁基礎(chǔ)工程施工組織方案
- 供水運營管理實施方案(4篇)
- 水土保持工程質(zhì)量評定表
- 水電站基本構(gòu)造原理與類型ppt版(共67)
- 秦朝統(tǒng)一PPT課件教學
評論
0/150
提交評論