版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
吳淞中學(xué)2025屆數(shù)學(xué)高二上期末統(tǒng)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若橢圓的短軸為,一個焦點為,且為等邊三角形的橢圓的離心率是A. B.C. D.2.江西省重點中學(xué)協(xié)作體于2020年進(jìn)行了一次校際數(shù)學(xué)競賽,共有100名同學(xué)參賽,經(jīng)過評判,這100名參賽者的得分都在之間,其得分的頻率分布直方圖如圖,則下列結(jié)論錯誤的是()A.得分在之間的共有40人B.從這100名參賽者中隨機(jī)選取1人,其得分在的概率為0.5C.這100名參賽者得分的中位數(shù)為65D.可求得3.設(shè)是等差數(shù)列,是其公差,是其前n項的和.若,,則下列結(jié)論不正確的是()A. B.C. D.與均為的最大值4.已知,且直線始終平分圓的周長,則的最小值是()A.2 B.C.6 D.165.函數(shù)的遞增區(qū)間是()A. B.和C. D.和6.已知、是橢圓和雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,則()A.2 B.3C.4 D.57.2021年是中國共產(chǎn)黨百年華誕,3月24日,中宣部發(fā)布中國共產(chǎn)黨成立100周年慶?;顒訕?biāo)識(如圖1).其中“100”的兩個“0”設(shè)計為兩個半徑為R的相交大圓,分別內(nèi)含一個半徑為r的同心小圓,且同心小圓均與另一個大圓外切(如圖2).已知,則由其中一個圓心向另一個小圓引的切線長與兩大圓的公共弦長之比為()A. B.3C. D.8.某學(xué)校隨機(jī)抽取了部分學(xué)生,對他們每周使用手機(jī)的時間進(jìn)行統(tǒng)計,得到如下的頻率分布直方圖.則下列說法:①;②若抽取100人,則平均用時13.75小時;③若從每周使用時間在,,三組內(nèi)的學(xué)生中用分層抽樣的方法選取8人進(jìn)行訪談,則應(yīng)從使用時間在內(nèi)的學(xué)生中選取的人數(shù)為3.其中正確的序號是()A.①② B.①③C.②③ D.①②③9.已知,且,則實數(shù)的值為()A. B.3C.4 D.610.下列關(guān)于拋物線的圖象描述正確的是()A.開口向上,焦點為 B.開口向右,焦點為C.開口向上,焦點為 D.開口向右,焦點為11.過拋物線C:y2=4x的焦點F分別作斜率為k1、k2的直線l1、l2,直線l1與C交于A、B兩點,直線l2與C交于D、E兩點,若|k1·k2|=2,則|AB|+|DE|的最小值為()A.10 B.12C.14 D.1612.已知橢圓上一點到橢圓一個焦點的距離是3,則點到另一個焦點的距離為()A.9 B.7C.5 D.3二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前n項和為,且滿足通項公式,則________14.?dāng)?shù)列的前項和為,則的通項公式為________.15.已知,,,若,則______.16.在等差數(shù)列中,,公差,則_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的焦點與雙曲線的焦點相同,且D的離心率為.(1)求C與D的方程;(2)若,直線與C交于A,B兩點,且直線PA,PB的斜率都存在.①求m的取值范圍.②試問這直線PA,PB的斜率之積是否為定值?若是,求出該定值;若不是,請說明理由.18.(12分)如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AB⊥AD,BC//AD,AD=2BC=2PA=2AB=2,E,F(xiàn),G分別為線段AD,DC,PB的中點.(1)證明:直線PF//平面ACG;(2)求直線PD與平面ACG所成角的正弦值.19.(12分)設(shè)圓的圓心為﹐直線l過點且與x軸不重合,直線l交圓于A,B兩點.過作的平行線交于點P.(1)求點P的軌跡方程;(2)設(shè)點P的軌跡為曲線E,直線l交E于M,N兩點,C在線段上運動,原點O關(guān)于C的對稱點為Q,求四邊形面積的取值范圍;20.(12分)已知橢圓的離心率為,且過點.(1)求橢圓的方程;(2)四邊形的頂點在橢圓上,且對角線,均過坐標(biāo)原點,若,求的取值范圍.21.(12分)已知函數(shù).(1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)若f(x)≥0對定義域內(nèi)的任意x恒成立,求實數(shù)a的取值范圍.22.(10分)已知是數(shù)列的前n項和,且.(1)求數(shù)列的通項公式;(2)若,求的前n項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】因為為等邊三角形,所以.考點:橢圓的幾何性質(zhì).點評:橢圓圖形當(dāng)中有一個特征三角形,它的三邊分別為a,b,c.因而可據(jù)此求出離心率.2、C【解析】根據(jù)給定的頻率分布直方圖,結(jié)合直方圖的性質(zhì),逐項計算,即可求解.【詳解】由頻率分布直方圖,可得A中,得分在之間共有人,所以A正確;B中,從100名參賽者中隨機(jī)選取1人,其得分在中的概率為,所以B正確;D中,由頻率分布直方圖的性質(zhì),可得,解得,所以D正確.C中,前2個小矩形面積之和為0.4,前3個小矩形面積之和為0.7,所以中位數(shù)在[60,70],這100名參賽者得分的中位數(shù)為,所以C不正確;故選:C.3、C【解析】由已知條件可以得出,,,即可得公差,再利用等差數(shù)列的性質(zhì)以及前n項的和的性質(zhì)可判斷每個選項的正誤,進(jìn)而可得正確選項.【詳解】由可得,由可得,故選項B正確;由可得,因為公差,故選項A正確,,所以,故選項C不正確;由于是等差數(shù)列,公差,,,,所以都是的最大值,故選項D正確;所以選項C不正確,故選:C4、B【解析】由已知直線過圓心得,再用均值不等式即可.【詳解】由已知直線過圓心得:,,當(dāng)且僅當(dāng)時取等.故選:B.5、C【解析】求導(dǎo)后,由可解得結(jié)果.【詳解】因為的定義域為,,由,得,解得,所以的遞增區(qū)間為.故選:C.【點睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的增區(qū)間,屬于基礎(chǔ)題.6、C【解析】依據(jù)橢圓和雙曲線定義和題給條件列方程組,得到關(guān)于橢圓的離心率和雙曲線的離心率的關(guān)系式,即可求得的值.【詳解】設(shè)橢圓的長軸長為,雙曲線的實軸長為,令,不妨設(shè)則,解之得代入,可得整理得,即,也就是故選:C7、C【解析】作出圖形,進(jìn)而根據(jù)勾股定理并結(jié)合圓與圓的位置關(guān)系即可求得答案.【詳解】如示意圖,由題意,,則,又,,所以,所以.故選:C.8、B【解析】根據(jù)頻率分布直方圖中小矩形的面積和為1可求出,再求出頻率分布直方圖的平均值,即為抽取100人的平均值的估計值,再利用分層抽樣可確定出使用時間在內(nèi)的學(xué)生中選取的人數(shù)為3.【詳解】,故①正確;根據(jù)頻率分布直方圖可估計出平均值為,所以估計抽取100人的平均用時13.75小時,②的說法太絕對,故②錯誤;每周使用時間在,,三組內(nèi)的學(xué)生的比例為,用分層抽樣的方法選取8人進(jìn)行訪談,則應(yīng)從使用時間在內(nèi)的學(xué)生中選取的人數(shù)為,故③正確.故選:B.9、B【解析】根據(jù)給定條件利用空間向量垂直的坐標(biāo)表示計算作答.詳解】因,且,則有,解得,所以實數(shù)的值為3.故選:B10、A【解析】把化成拋物線標(biāo)準(zhǔn)方程,依據(jù)拋物線幾何性質(zhì)看開口方向,求其焦點坐標(biāo)即可解決.【詳解】,即.則,即故此拋物線開口向上,焦點為故選:A11、B【解析】設(shè)出l1的方程為,與拋物線聯(lián)立后得到兩根之和,兩根之積,用弦長公式表達(dá)出,同理表達(dá)出,利用基本不等式求出的最小值.【詳解】拋物線C:y2=4x的焦點F為,直線l1的方程為,則聯(lián)立后得到,設(shè),,,則,同理設(shè)可得:,因為|k1·k2|=2,所以,當(dāng)且僅當(dāng),即或時,等號成立,故選:B12、A【解析】根據(jù)橢圓定義求得即可.【詳解】由橢圓定義知,點P到另一個焦點的距離為2×6-3=9.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由時,,可得,利用累乘法得,從而即可求解.【詳解】因為,所以時,,即,化簡得,又,所以,檢驗時也成立,所以,所以,故答案:.14、【解析】討論和兩種情況,進(jìn)而利用求得答案.【詳解】由題意,時,,時,,則,于是,故答案為:15、【解析】根據(jù)題意,由向量坐標(biāo)表示,列出方程,求出,,即可得出結(jié)果.【詳解】因為,,,若,則,解得,所以.故答案為:.【點睛】本題主要考查由向量坐標(biāo)表示求參數(shù),屬于基礎(chǔ)題型.16、15【解析】由等差數(shù)列通項公式直接可得.【詳解】.故答案為:15三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)C:;D:;(2)①且;②見解析.【解析】(1)根據(jù)D的離心率為,求出從而求出雙曲線的焦點,再由橢圓的焦點與雙曲線的焦點相同,即可求出,即可求出C與D的方程;(2)①根據(jù)題意容易得出,然后聯(lián)立方程,消元,利用即可求出m的取值范圍;②設(shè),由①得:,計算出,判斷其是否為定值即可.【詳解】解:(1)因為D的離心率為,即,解得:,所以D的方程為:;焦點坐標(biāo)為,又因橢圓的焦點與雙曲線的焦點相同,所以,所以,所以C的方程為:;(2)①如圖:因為直線與C交于A,B兩點,且直線PA,PB的斜率都存在,所以,聯(lián)立,消化簡得:,所以,解得,所以且;②設(shè),由①得:,,所以,故直線PA,PB的斜率之積不是是定值.【點睛】本題考查了求橢圓與雙曲線的方程、直線與橢圓的位置關(guān)系及橢圓中跟定直有關(guān)的問題,難度較大.18、(1)證明見解析(2)【解析】(1)連接EC,設(shè)EB與AC相交于點O,結(jié)合已知條件利用線面平行的判定定理可證得OG//平面PEF,再由三角形中位線定理結(jié)合線面垂直的判定定理可得AC//平面PEF,從而由面面垂直的判定可得平面PEF//平面GAC,進(jìn)而可證得結(jié)論,(2)由已知可證得PA、AB、AD兩兩互相垂直,以A為原點,AB,AD,AP所在的直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,利用空間向量求解即可【小問1詳解】證明:連接EC,設(shè)EB與AC相交于點O,如圖,因為BC//AD,且,AB⊥AD,所以四邊形ABCE為矩形,所以O(shè)為EB的中點,又因為G為PB的中點,所以O(shè)G為△PBE的中位線,即OG∥PE,因為OG平面PEF,PE?平面PEF,所以O(shè)G//平面PEF,因為E,F(xiàn)分別為線段AD,DC的中點,所以EF//AC,因為AC平面PEF,EF?平面PEF,所以AC//平面PEF,因為OG?平面GAC,AC?平面GAC,AC∩OG=O,所以平面PEF//平面GAC,因為PF?平面PEF,所以PF//平面GAC.【小問2詳解】因為PA⊥底面ABCD,AB?平面ABCD,AD?平面ABCD,所以PA⊥AB,PA⊥AD,因為AB⊥AD,所以PA、AB、AD兩兩互相垂直,以A為原點,AB,AD,AP所在的直線為x軸,y軸,z軸,建立空間直角坐標(biāo)系,如圖所示:則A(0,0,0),,C(1,1,0),D(0,2,0),P(0,0,1),所以,設(shè)平面ACG的法向量為,則,所以,令x=1,可得y=﹣1,z=﹣1,所以,設(shè)直線PD與平面ACG所成角為θ,則,所以直線PD與平面ACG所成角的正弦值為.19、(1)(2)【解析】(1)由得,,再由,可得的軌跡方程;(2)設(shè)四邊形的面積為,,設(shè)直線的方程為,代入橢圓方程,利用韋達(dá)定理代入,整理后再利用函數(shù)單調(diào)性可得答案.【小問1詳解】(1)圓的圓心為,因為,所以,因為,所以,又,且,,所以的軌跡方程為.【小問2詳解】設(shè)四邊形面積為,則,可設(shè)直線的方程為,代入橢圓方程化簡得,>0恒成立.設(shè),則,=,令,則,在上單調(diào)遞增,,即四邊形面積的取值范圍.20、(1)(2)【解析】(1)根據(jù)橢圓的離心率為,且過點,由求解;(2)設(shè)直線AC方程為,則直線BD的方程為,分時,與橢圓方程聯(lián)立求得A,B的坐標(biāo),再利用數(shù)量積求解.【小問1詳解】解:因為橢圓的離心率為,且過點,所以,所以,所以橢圓的方程為;【小問2詳解】設(shè)直線AC的方程為,則直線BD的方程為.當(dāng)時,聯(lián)立,得,不妨設(shè)A,聯(lián)立,得,當(dāng)B時,,,當(dāng)B時,,,當(dāng)時,同理可得上述結(jié)論.綜上,21、(1)答案見解析(2)【解析】(1)求導(dǎo)數(shù),然后對進(jìn)行分類討論,利用導(dǎo)數(shù)的正負(fù),可得函數(shù)的單調(diào)區(qū)間;(2)利用(1)中函數(shù)的單調(diào)性,求得函數(shù)在處取得最小值,即可求實數(shù)的取值范圍.【小問1詳解】解:求導(dǎo)可得①時,令可得,由于知;令,得∴函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;②時,令可得;令,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 年終工作總結(jié)個人報告(10篇)
- 中專自我鑒定合集15篇
- 標(biāo)準(zhǔn)設(shè)備購買合同
- 西安邁科商業(yè)中心連體超高層結(jié)構(gòu)設(shè)計-龍輝元張曉宇王福安
- 師德師風(fēng)個人學(xué)習(xí)心得范文
- 班級建設(shè)目標(biāo)
- 2023六年級語文上冊 第八單元 28 有的人-紀(jì)念魯迅有感教學(xué)實錄新人教版
- 簡愛讀后感10篇【100-1000字】
- 教師的辭職報告15篇
- 餐廳服務(wù)員辭職申請書集錦6篇
- 2024年盾構(gòu)操作工職業(yè)技能競賽理論考試題庫(含答案)
- 家庭教育與孩子的閱讀習(xí)慣培養(yǎng)
- 滬科黔科版《綜合實踐活動》5上農(nóng)業(yè)小當(dāng)家 活動一《花壇小暖棚》課件
- 期末素養(yǎng)展示試卷-2024-2025學(xué)年統(tǒng)編版語文三年級上冊
- 大學(xué)試卷(示范)
- 高職院校智能制造實驗室實訓(xùn)中心建設(shè)方案
- 勞動與社會保障法-001-國開機(jī)考復(fù)習(xí)資料
- 美麗的秋天景色作文500字小學(xué)
- 青少年足球培訓(xùn)
- 【MOOC】寄生人體的惡魔-醫(yī)學(xué)寄生蟲學(xué)-南方醫(yī)科大學(xué) 中國大學(xué)慕課MOOC答案
- 2024年護(hù)理質(zhì)量分析
評論
0/150
提交評論