版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆廣東省深圳市四校發(fā)展聯(lián)盟體高二數(shù)學第一學期期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某老師希望調(diào)查全校學生平均每天的自習時間.該教師調(diào)查了60位學生,發(fā)現(xiàn)他們每天的平均自習時間是3.5小時.這里的總體是()A.楊高的全校學生;B.楊高的全校學生的平均每天自習時間;C.所調(diào)查的60名學生;D.所調(diào)查的60名學生的平均每天自習時間.2.若橢圓的一個焦點為,則的值為()A.5 B.3C.4 D.23.若直線與互相垂直,則實數(shù)a的值為()A.-3 B.C. D.34.設等差數(shù)列的前n項和為,,公差為d,,,則下列結(jié)論不正確的是()A. B.當時,取得最大值C. D.使得成立的最大自然數(shù)n是155.直線在y軸上的截距是A. B.C. D.6.已知是雙曲線:的右焦點,是坐標原點,過作的一條漸近線的垂線,垂足為,并交軸于點.若,則的離心率為()A. B.C.2 D.7.設,,,則a,b,c的大小關系為()A. B.C. D.8.在如圖所示的莖葉圖中,若甲組數(shù)據(jù)的眾數(shù)為16,則乙組數(shù)據(jù)的平均數(shù)為()A.12 B.10C.8 D.69.雙曲線的漸近線方程為A. B.C. D.10.若函數(shù)在上為單調(diào)增函數(shù),則m的取值范圍()A. B.C. D.11.若任取,則x與y差的絕對值不小于1的概率為()A. B.C. D.12.德國數(shù)學家萊布尼茨是微積分的創(chuàng)立者之一,他從幾何問題出發(fā),引進微積分概念.在研究切線時認識到,求曲線的切線的斜率依賴于縱坐標的差值和橫坐標的差值,以及當此差值變成無限小時它們的比值,這也正是導數(shù)的幾何意義.設是函數(shù)f(x)的導函數(shù),若,對,且.總有,則下列選項正確的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知直線l是拋物線()的準線,半徑為的圓過拋物線的頂點O和焦點F,且與l相切,則拋物線C的方程為___________;若A為C上一點,l與C的對稱軸交于點B,在中,,則的值為___________.14.已知、分別為雙曲線的左、右焦點,為雙曲線右支上一點,滿足,直線與圓有公共點,則雙曲線的離心率的取值范圍是___________.15.已知直線與直線垂直,則實數(shù)的值為___________.16.已知函數(shù)在R上連續(xù)且可導,為偶函數(shù)且,其導函數(shù)滿足,則不等式的解集為___.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)圓心為的圓經(jīng)過點,,且圓心在上,(1)求圓的標準方程;(2)過點作直線交圓于且,求直線的方程.18.(12分)如圖,在四棱錐中,平面,底面為正方形,且,點在棱上,且直線與平面所成角的正弦值為(1)求點的位置;(2)求點到平面的距離19.(12分)已知是函數(shù)的一個極值點.(1)求實數(shù)的值;(2)求函數(shù)在區(qū)間上的最大值和最小值.20.(12分)已知等比數(shù)列{}的各項均為正數(shù),,,成等差數(shù)列,,數(shù)列{}的前n項和,且.(1)求{}和{}的通項公式;(2)設,記數(shù)列{}的前n項和為.求證:.21.(12分)如圖,在四棱錐中,平面,底面是直角梯形,,,,,為側(cè)棱包含端點上的動點.(1)當時,求證平面;(2)當直線與平面所成角的正弦值為時,求二面角的余弦值.22.(10分)已知橢圓的左、右焦點分別為,,點在橢圓C上,且滿足(1)求橢圓C的標準方程;(2)設直線與橢圓C交于不同的兩點M,N,且(O為坐標原點).證明:總存在一個確定的圓與直線l相切,并求該圓的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由總體的概念可得答案.【詳解】某老師希望調(diào)查全校學生平均每天的自習時間,該教師調(diào)查了60位學生,發(fā)現(xiàn)他們每天的平均自習時間是3.5小時,這里的總體是全校學生平均每天的自習時間.故選:B.2、B【解析】由題意判斷橢圓焦點在軸上,則,解方程即可確定的值.【詳解】有題意知:焦點在軸上,則,從而,解得:.故選:B.3、C【解析】根據(jù)給定條件利用兩條直線互相垂直的關系列式計算作答.【詳解】因直線與互相垂直,則,解得,所以實數(shù)a的值為.故選:C4、D【解析】根據(jù)等差數(shù)列等差中項的性質(zhì),求和公式及單調(diào)性分別判斷.【詳解】因為,,所以,則,故A正確;當時,取得最大值,故B正確;,故C正確;因為,,,所以使得成立的最大自然數(shù)是,故D錯誤.故選:D5、D【解析】在y軸上的截距只需令x=0求出y的值即可得出.【詳解】令x=0,則y=-2,即直線在y周上的截距為-2,故選D.6、A【解析】由條件建立a,b,c的關系,由此可求離心率的值.【詳解】設,則,∵,∴,∴,∴,∴,∴,∴離心率,故選:A.7、A【解析】構(gòu)造函數(shù),求導判斷其單調(diào)性即可【詳解】令,,令得,,當時,,單調(diào)遞增,,,,,,,故選:A8、A【解析】根據(jù)眾數(shù)的概念,求得的值,再根據(jù)平均數(shù)的計算公式,即可求解.【詳解】由題意,甲組數(shù)據(jù)的眾數(shù)為16,得,所以乙組數(shù)據(jù)的平均數(shù)為故選:A.9、A【解析】根據(jù)雙曲線的漸近線方程知,,故選A.10、B【解析】用函數(shù)單調(diào)性確定參數(shù),使用參數(shù)分離法即可.【詳解】,在上是增函數(shù),即恒成立,;設,;∴時,是增函數(shù);時,是減函數(shù);故時,,∴;故選:B.11、C【解析】根據(jù)題意,在平面直角坐標系中分析以及與差的絕對值不小于1所對應的平面區(qū)域,求出其面積,由幾何概型公式計算可得答案.【詳解】根據(jù)題意,,其對應的區(qū)域為正方形,其面積,若與差的絕對值不小于1,即,即或,對應的區(qū)域為圖中的陰影部分,其面積為,故與差的絕對值不小于1的概率.故選:C12、C【解析】由,得在上單調(diào)遞增,并且由的圖象是向上凸,進而判斷選項.【詳解】由,得在上單調(diào)遞增,因為,所以,故A不正確;對,,且,總有,可得函數(shù)的圖象是向上凸,可用如圖的圖象來表示,由表示函數(shù)圖象上各點處的切線的斜率,由函數(shù)圖象可知,隨著的增大,的圖象越來越平緩,即切線的斜率越來越小,所以,故B不正確;,表示點與點連線的斜率,由圖可知,所以C正確,同理,由圖可知,故D不正確.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】(1)由題意得:圓的圓心橫坐標為,半徑為,列方程,即可得到答案;(2)由正弦定理得,從而求得直線的方程,求出點的坐標,即可得到答案;【詳解】由題意得:圓的圓心橫坐標為,半徑為,,拋物線C的方程為;設到準線的距離為,,,,,代入,解得:,,,故答案為:;14、【解析】過點作于,過點作于,利用雙曲線的定義以及勾股定理可求得,由已知可得,可得出關于、的齊次不等式,結(jié)合可求得的取值范圍.【詳解】過點作于,過點作于,因為,所以,又因為,所以,故,又因為,且,所以,因此,所以,又因為直線與圓有公共點,所以,故,即,則,所以,又因為雙曲線的離心率,所以.故答案為:.15、【解析】由直線垂直的充要條件列式計算即可得答案.【詳解】解:因為直線與直線垂直,所以,解得故答案為:16、【解析】由已知條件可得圖象關于對稱,在上遞增,在上遞減,然后分四種情況討論求解即可【詳解】因為為偶函數(shù),所以的圖象關于軸對稱,所以的圖象關于對稱,因為,所以當時,,當時,,所以在上遞增,在上遞減,由,得,或,或,或,解得,或,或,或,綜上,,所以等式的解集為故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)求出線段的垂直平分線方程,求出此直線與已知直線的交點坐標即為圓心坐標,再求得半徑后可得圓的標準方程;(2)檢驗直線斜率不存在時是否滿足題意,在斜率存在時設方程為,求得圓心到直線的距離,由勾股定理得弦長,由弦長為8得參數(shù),得直線方程【詳解】(1)由已知,中點坐標為,垂直平分線方程為則由解得,所以圓心,因此半徑所以圓的標準方程(2)由可得圓心到直線的距離當直線斜率不存在時,其方程為,當直線斜率存在時,設其方程為,則,解得,此時其方程為,所以直線方程為或.【點睛】方法點睛:本題考查求圓的標準方程,考查直線與圓相交弦長.求弦長方法是幾何法:即求出圓心到弦所在直線距離,由勾股定理求得弦長.求直線方程時注意檢驗直線斜率不存在的情形18、(1)為棱中點(2)【解析】(1)以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,設,其中,利用空間向量法可得出關于的方程,結(jié)合求出的值,即可得出點的位置;(2)利用空間向量法可求得點到平面的距離【小問1詳解】解:因為平面,底面為正方形,以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,則、、、、,設,其中,則,設平面的法向量為,,,由,取,可得,由題意可得,整理可得,因為,解得,因此,點為棱的中點.【小問2詳解】解:由(1)知為棱中點,即,則,又,設平面的法向量為,由,取,可得,因為,所以,點到平面的距離為.19、(1)3(2),【解析】(1)先求出函數(shù)的導數(shù),根據(jù)極值點可得導數(shù)的零點,從而可求實數(shù)的值;(2)由(1)可得函數(shù)的單調(diào)性,從而可求最值.【小問1詳解】,是的一個極值點,.,,此時,令,解劇或,令,解得,故為的極值點,故.【小問2詳解】由(1)可得在上單調(diào)遞增,在上單調(diào)遞減,故在上為增函數(shù),在上為減函數(shù),.又20、(1)(2)證明見解析【解析】設等比數(shù)列的公比為,由,,成等差數(shù)列,解得.由,利用通項公式解得,可得.由數(shù)列的前項和,且,時,,化簡整理即可得出;(2),利用裂項求和方法、數(shù)列的單調(diào)性即可證明結(jié)論【小問1詳解】設等比數(shù)列的公比為,,,成等差數(shù)列,,即,化為:,解得,,即,解得,數(shù)列的前項和,且,時,,化為:,,數(shù)列是每項都為1的常數(shù)列,,化為【小問2詳解】證明:,數(shù)列的前項和為,21、(1)證明見解析;(2).【解析】(1)連接交于,連接,證得,從而證得平面;(2)過作于,以為原點,建立空間直角坐標系,設,求面的法向量,由直線與平面所成角的正弦值為,求得的值,再用向量法求出二面角的余弦值.【詳解】解:(1)連接交于,連接,由題意,∵,∴,∴,又面,面,∴面.(2)過作于,則在中,,,,以為原點,建立如圖所示的空間直角坐標系.設,則,,,,,,,,設向量為平面的一個法向量,則由,有,令,得;記直線與平面所成的角為,則,解得,此時;設向量為平面的一個法向量則由,有,令,得;∴二面角的余弦值為.【點睛】本題考查了線面平行的判定與證明,用向量法求線面角,二面角,還考查了學生的分析能力,空間想象能力,運算能力,屬于中檔題.22、(1);(2)理由見解析,圓的方程為.【解析】(1)根據(jù)給定條件可得,結(jié)合勾股定理、橢圓定義求出a,b得解.(2)聯(lián)立直線l
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 校園跑腿計劃書(共8篇)
- 西文字體2經(jīng)典款字體及其表現(xiàn)方法13805599
- 天津方言及其技巧
- 銀礦尾礦庫安全監(jiān)測預警與應急處理措施建設考核試卷
- 食品批發(fā)商業(yè)務知識應用考核試卷
- 藤制家具的舒適度評估考核試卷
- 閥門與旋塞的跨國技術合作與交流考核試卷
- 鐵路工程災害防治-洞察分析
- 2025小學新學期政教處的工作計劃
- 社區(qū)康復專業(yè)實習總結(jié)范文
- 實驗小學期末三好學生表彰大會背景展示PPT
- 井下作業(yè)風險識別與控制
- 《義務教育地理課程標準(2022年版)》全文學習解讀-2022年版義務教育課
- 2019天線年會交流-毫米波有源相控陣現(xiàn)狀及其發(fā)展趨勢
- 畢淑敏中考閱讀理解14篇(含答案)
- 項目管理系統(tǒng)需求說明書
- 八年級英語下冊期末復習首字母填空500題附答案
- 五星級酒店精裝修報價清單
- 國際貿(mào)易的基本概念分類
- 鹽城淇岸環(huán)境科技有限公司年處理 3000 噸醫(yī)療廢物處置項目環(huán)評報告書
- 重慶市社會保險登記表
評論
0/150
提交評論