江西贛中南五校2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第1頁(yè)
江西贛中南五校2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第2頁(yè)
江西贛中南五校2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第3頁(yè)
江西贛中南五校2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第4頁(yè)
江西贛中南五校2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江西贛中南五校2025屆數(shù)學(xué)高二上期末教學(xué)質(zhì)量檢測(cè)模擬試題考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在正方體中,E為的中點(diǎn),則直線與平面所成角的正弦值為()A. B.C. D.2.曲線在處的切線如圖所示,則()A. B.C. D.3.已知函數(shù),其導(dǎo)函數(shù)的圖象如圖所示,則()A.在上為減函數(shù) B.在處取極小值C.在上為減函數(shù) D.在處取極大值4.已知點(diǎn),點(diǎn)關(guān)于原點(diǎn)對(duì)稱點(diǎn)為,則()A. B.C. D.5.在四面體中,設(shè),若F為BC的中點(diǎn),P為EF的中點(diǎn),則=()A. B.C. D.6.已知過(guò)拋物線焦點(diǎn)的直線交拋物線于,兩點(diǎn),則的最小值為()A. B.2C. D.37.直線被橢圓截得的弦長(zhǎng)是A. B.C. D.8.已知條件,條件表示焦點(diǎn)在x軸上的橢圓,則p是q的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既非充分也非必要條件9.已知雙曲線:的左、右焦點(diǎn)分別為,,且,點(diǎn)是的右支上一點(diǎn),且,,則雙曲線的方程為()A. B.C. D.10.若直線與曲線有兩個(gè)公共點(diǎn),則實(shí)數(shù)的取值范圍為()A. B.C. D.11.把點(diǎn)隨機(jī)投入長(zhǎng)為,寬為的矩形內(nèi),則點(diǎn)與矩形四邊的距離均不小于的概率為()A. B.C. D.12.已知數(shù)列是等比數(shù)列,且,則的值為()A.3 B.6C.9 D.36二、填空題:本題共4小題,每小題5分,共20分。13.若雙曲線的離心率為2,則此雙曲線的漸近線方程___________.14.設(shè)空間向量,且,則___________.15.已知P為拋物線上的一個(gè)動(dòng)點(diǎn),設(shè)P到拋物線準(zhǔn)線的距離為d,點(diǎn),那么的最小值為_(kāi)_____16.已知橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2,P為橢圓上一點(diǎn),且(O為坐標(biāo)原點(diǎn)).若,則橢圓的離心率為_(kāi)_______三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知數(shù)列的前n項(xiàng)和為,且.(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前n項(xiàng)和.18.(12分)已知函數(shù).(1)求的單調(diào)遞增區(qū)間;(2)求在的最大值.19.(12分)圓過(guò)點(diǎn)A(1,-2),B(-1,4),求:(1)周長(zhǎng)最小的圓的方程;(2)圓心在直線2x-y-4=0上的圓的方程20.(12分)一杯100℃的開(kāi)水放在室溫25℃的房間里,1分鐘后水溫降到85℃,假設(shè)每分鐘水溫變化量和水溫與室溫之差成正比(1)分別求2分鐘,3分鐘后的水溫;(2)記n分鐘后的水溫為,證明:是等比數(shù)列,并求出的通項(xiàng)公式;(3)當(dāng)水溫在40℃到55℃之間時(shí)(包括40℃和55℃),為最適合飲用的溫度,則在水燒開(kāi)后哪個(gè)時(shí)間段飲用最佳.(參考數(shù)據(jù):)21.(12分)橢圓的一個(gè)頂點(diǎn)為,離心率(1)求橢圓方程;(2)若直線與橢圓交于不同的兩點(diǎn).若滿足,求直線的方程22.(10分)已知圓O:與圓C:(1)在①,②這兩個(gè)條件中任選一個(gè),填在下面的橫線上,并解答若______,判斷這兩個(gè)圓位置關(guān)系;(2)若,求直線被圓C截得的弦長(zhǎng)注:若第(1)問(wèn)選擇兩個(gè)條件分別作答,按第一個(gè)作答計(jì)分

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】構(gòu)建空間直角坐標(biāo)系,求直線的方向向量、平面的法向量,應(yīng)用空間向量的坐標(biāo)表示,求直線與平面所成角的正弦值.【詳解】以點(diǎn)D為坐標(biāo)原點(diǎn),向量分別為x,y,z軸建立空間直角坐標(biāo)系,則,,,,可得,,,設(shè)面的法向量為,有,取,則,所以,,,則直線與平面所成角的正弦值為故選:D.2、C【解析】由圖可知切線斜率為,∴.故選:C.3、C【解析】首先利用導(dǎo)函數(shù)的圖像求和的解,進(jìn)而得到函數(shù)的單調(diào)區(qū)間和極值點(diǎn).【詳解】由導(dǎo)函數(shù)的圖象可知:當(dāng)時(shí),或;當(dāng)時(shí),或,所以的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為和,故在處取得極大值,在處取得極小值,在處取得極大值.故選:C.4、C【解析】根據(jù)空間兩點(diǎn)間距離公式,結(jié)合對(duì)稱性進(jìn)行求解即可.【詳解】因?yàn)辄c(diǎn)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為,所以,因此,故選:C5、A【解析】作出圖示,根據(jù)空間向量的加法運(yùn)算法則,即可得答案.【詳解】如圖示:連接OF,因?yàn)镻為EF中點(diǎn),,F(xiàn)為BC的中點(diǎn),則,故選:A6、D【解析】設(shè)出直線方程,聯(lián)立拋物線方程,得到韋達(dá)定理,求得,利用拋物線定義,將目標(biāo)式轉(zhuǎn)化為關(guān)于的代數(shù)式,消元后,利用基本不等式即可求得結(jié)果.【詳解】因?yàn)閽佄锞€的焦點(diǎn)的坐標(biāo)為,顯然要滿足題意,直線的斜率存在,設(shè)直線的方程為聯(lián)立可得,其,設(shè)坐標(biāo)為,顯然,則,,根據(jù)拋物線定義,MF=故=4+4令,故4+4當(dāng)且僅當(dāng),即時(shí)取得最小值.故選:D.【點(diǎn)睛】本題考察拋物線中的最值問(wèn)題,涉及到韋達(dá)定理的使用,基本不等式的使用;其中利用的關(guān)系,以及拋物線的定義轉(zhuǎn)化目標(biāo)式,是解決問(wèn)題的關(guān)鍵.7、A【解析】直線y=x+1代入,得出關(guān)于x的二次方程,求出交點(diǎn)坐標(biāo),即可求出弦長(zhǎng)【詳解】將直線y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直線y=x+1被橢圓x2+4y2=8截得的弦長(zhǎng)為故選A【點(diǎn)睛】本題查直線與橢圓的位置關(guān)系,考查弦長(zhǎng)的計(jì)算,屬于基礎(chǔ)題8、A【解析】根據(jù)條件,求得a的范圍,根據(jù)充分、必要條件的定義,即可得答案.【詳解】因?yàn)闂l件表示焦點(diǎn)在x軸上的橢圓,所以,解得或,所以條件是條件q:或的充分不必要條件.故選:A9、B【解析】畫出圖形,利用已知條件轉(zhuǎn)化求解,關(guān)系,利用,解得,即可得到雙曲線的方程【詳解】由題意雙曲線的圖形如圖,連接與軸交于點(diǎn),設(shè),,因?yàn)?,所以,因?yàn)?,所以,則,因?yàn)辄c(diǎn)是的右支上一點(diǎn),所以,所以,則,因?yàn)?,所以,,由勾股定理可得:,即,解得,則,所以雙曲線的方程為:故選:B10、D【解析】由題可知,曲線表示一個(gè)半圓,結(jié)合半圓的圖像和一次函數(shù)圖像即可求出的取值范圍.【詳解】由得,畫出圖像如圖:當(dāng)直線與半圓O相切時(shí),直線與半圓O有一個(gè)公共點(diǎn),此時(shí),,所以,由圖可知,此時(shí),所以,當(dāng)直線如圖過(guò)點(diǎn)A、B時(shí),直線與半圓O剛好有兩個(gè)公共點(diǎn),此時(shí),由圖可知,當(dāng)直線介于與之間時(shí),直線與曲線有兩個(gè)公共點(diǎn),所以.故選:D.11、A【解析】確定矩形四邊的距離均不小于的點(diǎn)構(gòu)成的區(qū)域,由幾何概型面積型的公式計(jì)算可得結(jié)果.【詳解】若點(diǎn)與矩形四邊的距離均不小于,則其落在如圖所示的陰影區(qū)域內(nèi),所求概率.故選:A.12、C【解析】應(yīng)用等比中項(xiàng)的性質(zhì)有,結(jié)合已知求值即可.【詳解】由等比數(shù)列的性質(zhì)知:,,,所以,又,所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)離心率得出,結(jié)合得出關(guān)系,即可求出雙曲線的漸近線方程.【詳解】解:由題可知,離心率,即,又,即,則,故此雙曲線的漸近線方程為.故答案為:.14、1【解析】根據(jù),由求解.【詳解】因?yàn)橄蛄?,且,所以,即,解?故答案為:115、5【解析】由拋物線的定義可得,所以,由圖可知當(dāng)三點(diǎn)共線時(shí),取得最小值,從而可求得結(jié)果【詳解】拋物線的焦點(diǎn),準(zhǔn)線為,如圖,過(guò)作垂直準(zhǔn)線于點(diǎn),則,所以,由圖可知當(dāng)三點(diǎn)共線時(shí),取得最小值,即最小值為,,所以的最小值為5,故答案為:516、##【解析】由向量的數(shù)量積得,從而得,利用勾股定理和橢圓的定義可得的等式,從而求得離心率【詳解】,所以,又,所以是直角三角形,,,又,,所以,,,所以故答案為:三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)【解析】(1)根據(jù)與的關(guān)系,分和兩種情況,求出,再判斷是否合并;(2)利用錯(cuò)位相減法求出數(shù)列的前n項(xiàng)和.【小問(wèn)1詳解】,當(dāng)時(shí),,當(dāng)時(shí),,也滿足上式,數(shù)列的通項(xiàng)公式為:.【小問(wèn)2詳解】由(1)可得,①②①②得,18、(1)(2)【解析】(1)利用兩角和的余弦公式以及輔助角公式可得,再由正弦函數(shù)單調(diào)區(qū)間,整體代入即可求解.(2)根據(jù)三角函數(shù)的單調(diào)性即可求解.【小問(wèn)1詳解】,,解得,所以函數(shù)的單調(diào)遞增區(qū)間為【小問(wèn)2詳解】由(1),解得函數(shù)的單調(diào)遞減區(qū)間為,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,,,所以函數(shù)的最大值為.19、(1)x2+(y-1)2=10;(2)(x-3)2+(y-2)2=20.【解析】(1)根據(jù)當(dāng)AB為直徑時(shí),過(guò)A,B的圓的半徑最小進(jìn)行求解即可;(2)根據(jù)垂徑定理,通過(guò)解方程組求出圓心坐標(biāo),進(jìn)而可以求出圓的方程.【詳解】解:(1)當(dāng)AB為直徑時(shí),過(guò)A,B的圓的半徑最小,從而周長(zhǎng)最小,即AB中點(diǎn)(0,1)為圓心,半徑r=|AB|=.故圓的方程為x2+(y-1)2=10;(2)由于AB的斜率為k=-3,則AB的垂直平分線的斜率為,AB的垂直平分線的方程是y-1=x,即x-3y+3=0.由解得即圓心坐標(biāo)是C(3,2)又r=|AC|==2.所以圓的方程是(x-3)2+(y-2)2=20.20、(1)2分鐘的水溫為℃,3分鐘后的水溫℃;(2)證明見(jiàn)解析,,;(3)在水燒開(kāi)后4到7分鐘飲用最佳.【解析】(1)根據(jù)給定條件設(shè)第n分鐘后的水溫為,探求出與的關(guān)系即可計(jì)算作答.(2)利用(1)的信息,列式變形、推導(dǎo)即可得證,進(jìn)而求出的通項(xiàng)公式.(3)由(2)的結(jié)論列不等式,借助對(duì)數(shù)函數(shù)的性質(zhì)求解即得.【小問(wèn)1詳解】設(shè)第n分鐘后的水溫為,正比例系數(shù)為k,記,依題意,,當(dāng)時(shí),,則有,解得,因此,,即有,,所以2分鐘的水溫為℃,3分鐘后的水溫℃.小問(wèn)2詳解】由(1)知,,時(shí),,,則有,即,而,于是得是以為首項(xiàng),為公比的等比數(shù)列,則有,即,所以是等比數(shù)列,的通項(xiàng)公式是,.【小問(wèn)3詳解】由(2)及已知得:,即,整理得,兩邊取常用對(duì)數(shù)得:,而,解得,即,所以在水燒開(kāi)后4到7分鐘飲用最佳.【點(diǎn)睛】思路點(diǎn)睛:涉及實(shí)際意義給出的數(shù)列問(wèn)題,正確理解實(shí)際意義,列出關(guān)系式,再借助數(shù)列思想探求相鄰兩項(xiàng)間關(guān)系即可推理作答.21、(1);(2)【解析】(1)首先由橢圓的一個(gè)頂點(diǎn)可以求出的值,再根據(jù)離心率可得到、的關(guān)系,聯(lián)立即可求得的值,進(jìn)而得到橢圓的方程;(2)先聯(lián)立直線與橢圓,結(jié)合韋達(dá)定理得到線段的中點(diǎn)的坐標(biāo),再根據(jù),即可求得的值,進(jìn)而求得直線的方程【詳解】(1)由一個(gè)頂點(diǎn)為,離心率,可得,,,解得,,即有橢圓方程為(2)由知點(diǎn)在線段的垂直平分線上,由,消去得,由,得方程的,即方程有兩個(gè)不相等的實(shí)數(shù)根設(shè)、,線段的中點(diǎn),則,所以,所以,即,因?yàn)?,所以直線的斜率為,由,得,所以,解得:,即有直線的方程為22、(1)選①:外離;選②:相切;(2)【解析】

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論