版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省安陽(yáng)市安陽(yáng)縣一中2025屆高二數(shù)學(xué)第一學(xué)期期末預(yù)測(cè)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知數(shù)列滿足,,則的最小值為()A. B.C. D.2.設(shè)雙曲線的方程為,過(guò)拋物線的焦點(diǎn)和點(diǎn)的直線為.若的一條漸近線與平行,另一條漸近線與垂直,則雙曲線的方程為()A. B.C. D.3.若,則()A.1 B.2C.4 D.84.已知直線與橢圓:()相交于,兩點(diǎn),且線段的中點(diǎn)在直線:上,則橢圓的離心率為()A. B.C. D.5.已知函數(shù)在處取得極值,則()A. B.C. D.6.(5分)已知集合A={x|?2<x<4},集合B={x|(x?6)(x+1)<0},則A∩B=A.{x|1<x<4} B.{x|x<4或x>6}C.{x|?2<x<?1} D.{x|?1<x<4}7.在平面直角坐標(biāo)系中,橢圓的左、右焦點(diǎn)分別為,,過(guò)且垂直于軸的直線與交于,兩點(diǎn),與軸交于點(diǎn),,則的離心率為()A. B.C. D.8.阿基米德(公元前287年~公元前212年)不僅是著名物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到的橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在軸上,且橢圓的離心率為,面積為,則橢圓的標(biāo)準(zhǔn)方程為()A B.C. D.9.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件10.平行六面體的各棱長(zhǎng)均相等,,,則異面直線與所成角的余弦值為()A. B.C. D.11.已知橢圓的左,右兩個(gè)焦點(diǎn)分別為,若橢圓C上存在一點(diǎn)A,滿足,則橢圓C的離心率的取值范圍是()A. B.C. D.12.已知F1(-5,0),F(xiàn)2(5,0),動(dòng)點(diǎn)P滿足|PF1|-|PF2|=2a,當(dāng)a為3和5時(shí),點(diǎn)P的軌跡分別為()A.雙曲線和一條直線 B.雙曲線和一條射線C.雙曲線的一支和一條直線 D.雙曲線的一支和一條射線二、填空題:本題共4小題,每小題5分,共20分。13.展開式中的系數(shù)是___________.14.已知等差數(shù)列,的前n項(xiàng)和分別為,若,則=______15.已知直線與圓交于,兩點(diǎn),則的最小值為___________.16.已知圓和直線.(1)求直線l所經(jīng)過(guò)的定點(diǎn)的坐標(biāo),并判斷直線與圓的位置關(guān)系;(2)求當(dāng)k取什么值,直線被圓截得的弦最短,并求這條最短弦的長(zhǎng).三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知直線與雙曲線相交于、兩點(diǎn).(1)當(dāng)時(shí),求;(2)是否存在實(shí)數(shù),使以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求出的值;若不存在,說(shuō)明理由.18.(12分)已知數(shù)列的首項(xiàng),,,.(1)證明:為等比數(shù)列;(2)求數(shù)列的前項(xiàng)和19.(12分)如圖,在空間四邊形中,分別是的中點(diǎn),分別是上的點(diǎn),滿足.(1)求證:四點(diǎn)共面;(2)設(shè)與交于點(diǎn),求證:三點(diǎn)共線.20.(12分)已知P,Q的坐標(biāo)分別為,,直線PM,QM相交于點(diǎn)M,且它們的斜率之積是.設(shè)點(diǎn)M的軌跡為曲線C.(1)求曲線的方程;(2)設(shè)為坐標(biāo)原點(diǎn),圓的半徑為1,直線:與圓相切,且與曲線交于不同的兩點(diǎn)A,B.當(dāng),且滿足時(shí),求面積的取值范圍.21.(12分)已知點(diǎn)A(1,2)在拋物線C∶上,過(guò)點(diǎn)A作兩條直線分別交拋物線于點(diǎn)D,E,直線AD,AE的斜率分別為kAD,kAE,若直線DE過(guò)點(diǎn)P(-1,-2)(1)求拋物線C的方程;(2)求直線AD,AE的斜率之積.22.(10分)已知公差不為零的等差數(shù)列中,,且,,成等比數(shù)列.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)若,求數(shù)列的前項(xiàng)和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】采用疊加法求出,由可得,結(jié)合對(duì)勾函數(shù)性質(zhì)分析在或6取到最小值,代值運(yùn)算即可求解.【詳解】因?yàn)?,所以,,,,式相加可得,所以,,?dāng)且僅當(dāng)取到,但,,所以時(shí),當(dāng)時(shí),,,所以的最小值為.故選:C2、D【解析】由拋物線的焦點(diǎn)可求得直線的方程為,即得直線的斜率為,再根據(jù)雙曲線的漸近線的方程為,可得,即可求出,得到雙曲線的方程【詳解】由題可知,拋物線焦點(diǎn)為,所以直線的方程為,即直線的斜率為,又雙曲線的漸近線的方程為,所以,,因?yàn)?,解得故選:【點(diǎn)睛】本題主要考查拋物線的簡(jiǎn)單幾何性質(zhì),雙曲線的幾何性質(zhì),以及直線與直線的位置關(guān)系的應(yīng)用,屬于基礎(chǔ)題3、D【解析】由題意結(jié)合導(dǎo)數(shù)的運(yùn)算可得,再由導(dǎo)數(shù)的概念即可得解.【詳解】由題意,所以,所以.故選:D.4、A【解析】將直線代入橢圓方程整理得關(guān)于的方程,運(yùn)用韋達(dá)定理,求出中點(diǎn)坐標(biāo),再由條件得到,再由,,的關(guān)系和離心率公式,即可求出離心率.【詳解】解:將直線代入橢圓方程得,,即,設(shè),,,,則,即中點(diǎn)的橫坐標(biāo)是,縱坐標(biāo)是,由于線段的中點(diǎn)在直線上,則,又,則,,即橢圓的離心率為.故選:A5、B【解析】根據(jù)極值點(diǎn)處導(dǎo)函數(shù)為零可求解.【詳解】因?yàn)?,則,由題意可知.經(jīng)檢驗(yàn)滿足題意故選:B6、D【解析】由(x?6)(x+1)<0,得?1<x<6,從而有B={x|?1<x<6},所以A∩B={x|?1<x<4},故選D7、B【解析】由題意結(jié)合幾何性質(zhì)可得為等腰三角形,且,所以,求出的長(zhǎng),結(jié)合橢圓的定義可得答案.【詳解】如圖,由題意軸,軸,則又為的中點(diǎn),則為的中點(diǎn),又,則為等腰三角形,且,所以將代入橢圓方程得,,即所以,則由橢圓的定義可得,即則橢圓的離心率故選:B8、C【解析】由題意,設(shè)出橢圓的標(biāo)準(zhǔn)方程為,然后根據(jù)橢圓的離心率以及橢圓面積列出關(guān)于的方程組,求解方程組即可得答案【詳解】由題意,設(shè)橢圓的方程為,由橢圓的離心率為,面積為,∴,解得,∴橢圓的方程為,故選:C.9、A【解析】由三角函數(shù)的單調(diào)性直接判斷是否能推出,反過(guò)來(lái)判斷時(shí),是否能推出.【詳解】當(dāng)時(shí),利用正弦函數(shù)的單調(diào)性知;當(dāng)時(shí),或.綜上可知“”是“”的充分不必要條件.故選:A【點(diǎn)睛】本題考查判斷充分必要條件,三角函數(shù)性質(zhì),意在考查基本判斷方法,屬于基礎(chǔ)題型.10、B【解析】利用基底向量表示出向量,,即可根據(jù)向量夾角公式求出【詳解】如圖所示:不妨設(shè)棱長(zhǎng)為1,,,所以==,,,即,故異面直線與所成角的余弦值為故選:B注意事項(xiàng):1.將答案寫在答題卡上2.本卷共10小題,共80分.11、C【解析】根據(jù)題意可知當(dāng)A為橢圓的上下頂點(diǎn)時(shí),即可滿足橢圓C上存在一點(diǎn)A,使得,由此可得,解此不等式可得答案.【詳解】由橢圓的對(duì)稱性可知,當(dāng)A為橢圓的上下頂點(diǎn)時(shí),最大,故只需即可滿足題意,設(shè)O為坐標(biāo)原點(diǎn),則只需,即有,所以,解得,故選:C12、D【解析】由雙曲線定義結(jié)合參數(shù)a的取值分類討論而得.【詳解】依題意得,當(dāng)時(shí),,且,點(diǎn)P的軌跡為雙曲線的右支;當(dāng)時(shí),,故點(diǎn)P的軌跡為一條射線.故選D.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)二項(xiàng)展開式的通項(xiàng)公式,可知展開式中含的項(xiàng),以及展開式中含的項(xiàng),再根據(jù)組合數(shù)的運(yùn)算即可求出結(jié)果.【詳解】解:由題意可得,展開式中含的項(xiàng)為,而展開式中含的項(xiàng)為,所以的系數(shù)為.故答案為:.14、【解析】利用等差數(shù)列的性質(zhì)和等差數(shù)列的前項(xiàng)和公式可得,再令即可求解.【詳解】由等差數(shù)列的性質(zhì)和等差數(shù)列的前項(xiàng)和公式可得:因?yàn)椋蚀鸢笧椋骸军c(diǎn)睛】關(guān)鍵點(diǎn)點(diǎn)睛:本題解題的關(guān)鍵是利用等差數(shù)列的性質(zhì)可得,再轉(zhuǎn)化為前項(xiàng)和公式的形式,代入的值即可.15、【解析】先求出直線經(jīng)過(guò)的定點(diǎn),再求出圓心到定點(diǎn)的距離,數(shù)形結(jié)合即得解.【詳解】由題得,所以直線經(jīng)過(guò)定點(diǎn),圓的圓心為,半徑為.圓心到定點(diǎn)的距離為,當(dāng)時(shí),取得最小值,且最小值為.故答案為:816、(1)直線過(guò)定點(diǎn)P(4,3),直線和圓總有兩個(gè)不同交點(diǎn)(2)k=1,【解析】(1)把直線方程化為點(diǎn)斜式方程即可;(2)由圓的性質(zhì)知,當(dāng)直線與PC垂直時(shí),弦長(zhǎng)最短.【小問(wèn)1詳解】直線方程可化為,則直線過(guò)定點(diǎn)P(4,3),又圓C標(biāo)準(zhǔn)方程為,圓心為,半徑為,而,所以點(diǎn)P在圓內(nèi),所以不論k取何值,直線和圓總有兩個(gè)不同交點(diǎn).【小問(wèn)2詳解】由圓的性質(zhì)知,當(dāng)直線與PC垂直時(shí),弦長(zhǎng)最短.,所以k=1時(shí)弦長(zhǎng)最短.弦長(zhǎng)為.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)不存在,理由見(jiàn)解析.【解析】(1)當(dāng)時(shí),將直線的方程與雙曲線的方程聯(lián)立,列出韋達(dá)定理,利用弦長(zhǎng)公式可求得;(2)假設(shè)存在實(shí)數(shù),使以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),設(shè)、,將直線與雙曲線的方程聯(lián)立,列出韋達(dá)定理,由已知可得出,利用平面向量數(shù)量積的坐標(biāo)運(yùn)算結(jié)合韋達(dá)定理可得出,即可得出結(jié)論.【小問(wèn)1詳解】解:設(shè)點(diǎn)、,當(dāng)時(shí),聯(lián)立,可得,,由韋達(dá)定理可得,,所以,.【小問(wèn)2詳解】解:假設(shè)存在實(shí)數(shù),使以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),設(shè)、,聯(lián)立得,由題意可得,解得且,由韋達(dá)定理可知,因?yàn)橐詾橹睆降膱A經(jīng)過(guò)坐標(biāo)原點(diǎn),則,所以,,整理可得,該方程無(wú)實(shí)解,故不存在.18、(1)證明見(jiàn)解析(2)【解析】(1)利用等比數(shù)列的定義即可證明.(2)利用錯(cuò)位相減法即可求解.【小問(wèn)1詳解】當(dāng)時(shí),,所以:數(shù)列是公比為3的等比數(shù)列;【小問(wèn)2詳解】由(1)知,數(shù)列是以3為首項(xiàng),以3為公比的等比數(shù)列,所以:,所以:,,所以,①所以,②①②可得.19、(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】【小問(wèn)1詳解】連接AC,分別是的中點(diǎn),.在中,,所以四點(diǎn)共面.【小問(wèn)2詳解】,所以,又平面平面,同理平面,為平面與平面的一個(gè)公共點(diǎn).又平面平面,即三點(diǎn)共線.20、(1)(2)【解析】【小問(wèn)1詳解】設(shè)點(diǎn),則,整理得曲線的方程:【小問(wèn)2詳解】因?yàn)閳A的半徑為1,直線:與圓相切,則,,設(shè),將代入得,,,,,所以,,因?yàn)?,令,在上單調(diào)減,,所以21、(1)(2)【解析】(1)代入點(diǎn)即可求得拋物線方程;(2)聯(lián)立方程后利用韋達(dá)定理求出,,,,然后代入即可求得斜率的積.【小問(wèn)1詳解】解:點(diǎn)A(1,2)在拋物線C∶上故【小問(wèn)2詳解】設(shè)直線方程為:聯(lián)立方程,整理得:由題意及韋達(dá)定理可得:,22、(1)(2)【解析】(Ⅰ)將數(shù)列中的項(xiàng)用和表示,根據(jù)等比數(shù)列的性質(zhì)可得到關(guān)于的一元二次方程可求得的值,即可得到數(shù)列的通項(xiàng)公式;(Ⅱ)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 道路景觀設(shè)施承諾書
- 煙草產(chǎn)品收款流程
- 印刷廠門窗施工合同協(xié)議書
- 健身房墻面裝修合同協(xié)議
- 可持續(xù)發(fā)展成品油市場(chǎng)管理辦法
- 基坑降水施工合同:文物保護(hù)工程
- 廣告公司合同管理方案
- 建筑公司工程車輛司機(jī)聘用合同
- 通信設(shè)備維護(hù)服務(wù)合同
- 流行病的特征
- 巴金名著導(dǎo)讀《十年一夢(mèng)》
- 項(xiàng)目申報(bào)書(模板)(高校)
- 教科版五年級(jí)科學(xué)上冊(cè)全冊(cè)教學(xué)設(shè)計(jì)
- 三只松鼠客戶關(guān)系管理
- XX電站接地裝置的熱穩(wěn)定校驗(yàn)報(bào)告(220kV)
- 2024年山東地區(qū)光明電力服務(wù)公司第二批招聘高頻考題難、易錯(cuò)點(diǎn)模擬試題(共500題)附帶答案詳解
- 涉警輿情培訓(xùn)課件模板
- 馬戲團(tuán)活動(dòng)方案
- 《預(yù)防踩踏》課件
- 人教版四年級(jí)上下冊(cè)英語(yǔ)單詞默寫表(漢譯英)
- 小學(xué)關(guān)工委制度范本
評(píng)論
0/150
提交評(píng)論