版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆內蒙古太仆寺旗寶昌一中高一上數(shù)學期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知空間直角坐標系中,點關于軸的對稱點為,則點的坐標為A. B.C. D.2.一種藥在病人血液中量低于時病人就有危險,現(xiàn)給某病人的靜脈注射了這種藥,如果藥在血液中以每小時80%的比例衰減,那么應再向病人的血液中補充這種藥不能超過的最長時間為()A.1.5小時 B.2小時C.2.5小時 D.3小時3.若關于的不等式的解集為,則函數(shù)在區(qū)間上的最小值為()A. B.C. D.4.使不等式成立的充分不必要條件是()A. B.C. D.5.下列函數(shù)中,值域是的是A. B.C. D.6.如果,那么下列不等式中,一定成立的是()A. B.C. D.7.設,且,則()A. B.C. D.8.命題:,的否定是()A., B.,C., D.,9.為了得到函數(shù)的圖象,可以將函數(shù)的圖象()A.向左平移個單位長度得到 B.向右平移個單位長度得到C.向左平移個單位長度得到 D.向右平移個單位長度得到10.一個幾何體的三視圖如圖所示,則該幾何體可以是()A.棱柱 B.棱臺C.圓柱 D.圓臺二、填空題:本大題共6小題,每小題5分,共30分。11.如圖所示,弧田是由圓弧和其所對弦圍成的圖形,若弧田的弧長為,弧所在的圓的半徑為4,則弧田的面積是___________.12.已知函數(shù)定義域為,若滿足①在內是單調函數(shù);存在使在上的值域為,那么就稱為“半保值函數(shù)”,若函數(shù)且是“半保值函數(shù)”,則的取值范圍為________13.下列五個結論:集合2,3,4,5,,集合,若f:,則對應關系f是從集合A到集合B的映射;函數(shù)的定義域為,則函數(shù)的定義域也是;存在實數(shù),使得成立;是函數(shù)的對稱軸方程;曲線和直線的公共點個數(shù)為m,則m不可能為1;其中正確有______寫出所有正確的序號14.已知集合A={x|2x>1},B={x|log2x<0},則?AB=___15.將正方形沿對角線折成直二面角,有如下四個結論:①;②是等邊三角形;③與所成的角為,④取中點,則為二面角的平面角其中正確結論是__________.(寫出所有正確結論的序號)16.中,若,則角的取值集合為_________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù)f(x)=sinωx-cosωx(ω>0)的最小正周期為π.(1)求函數(shù)y=f(x)圖象對稱軸方程;(2)討論函數(shù)f(x)在上的單調性.18.已知函數(shù),.(1)設函數(shù),求函數(shù)在區(qū)間上的值域;(2)定義表示中較小者,設函數(shù).①求函數(shù)的單調區(qū)間及最值;②若關于的方程有兩個不同的實根,求實數(shù)的取值范圍.19.已知的圖象上相鄰兩對稱軸的距離為.(1)若,求的遞增區(qū)間;(2)若時,若的最大值與最小值之和為5,求的值.20.已知函數(shù),,當時,恒有(1)求的表達式及定義域;(2)若方程有解,求實數(shù)的取值范圍;(3)若方程的解集為,求實數(shù)的取值范圍21.某種商品在天內每克的銷售價格(元)與時間的函數(shù)圖象是如圖所示的兩條線段(不包含兩點);該商品在30天內日銷售量(克)與時間(天)之間的函數(shù)關系如下表所示:第天5152030銷售量克35252010(1)根據(jù)提供的圖象,寫出該商品每克銷售的價格(元)與時間的函數(shù)關系式;(2)根據(jù)表中數(shù)據(jù)寫出一個反映日銷售量隨時間變化的函數(shù)關系式;(3)在(2)的基礎上求該商品的日銷售金額的最大值,并求出對應的值.(注:日銷售金額=每克的銷售價格×日銷售量)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】∵在空間直角坐標系中,點(x,y,z)關于z軸的對稱點的坐標為:(﹣x,﹣y,z),∴點關于z軸的對稱點的坐標為:故選:C2、D【解析】設時間為,依題意有,解指數(shù)不等式即可;【詳解】解:設時間為,有,即,解得.故選:D3、A【解析】由題意可知,關于的二次方程的兩根分別為、,求出、的值,然后利用二次函數(shù)的基本性質可求得在區(qū)間上的最小值.【詳解】由題意可知,關于的二次方程的兩根分別為、,則,解得,則,故當時,函數(shù)取得最小值,即.故選:A.4、A【解析】解一元二次不等式,再根據(jù)充分條件、必要條件的定義結合集合間的關系直接判斷作答.【詳解】解不等式得:,對于A,因,即是成立的充分不必要條件,A正確;對于B,是成立的充要條件,B不正確;對于C,因,且,則是成立的不充分不必要條件,C不正確;對于D,因,則是成立必要不充分條件,D不正確.故選:A5、D【解析】分別求出各函數(shù)的值域,即可得到答案.【詳解】選項中可等于零;選項中顯然大于1;選項中,,值域不是;選項中,故.故選D.【點睛】本題考查函數(shù)的性質以及值域的求法.屬基礎題.6、D【解析】取,利用不等式性質可判斷ABC選項;利用不等式的性質可判斷D選項.【詳解】若,則,所以,,,ABC均錯;因為,則,因為,則,即.故選:D.7、C【解析】將等式變形后,利用二次根式的性質判斷出,即可求出的范圍.【詳解】即故選:C【點睛】此題考查解三角函數(shù)方程,恒等變化后根據(jù)的關系即可求解,屬于簡單題目.8、D【解析】由全稱量詞命題與存在量詞命題的否定判斷即可.【詳解】由全稱量詞命題與存在量詞命題的否定,可知原命題的否定為,故選:D9、A【解析】先利用輔助角公式將函數(shù)變形,然后利用圖象的平移變換分析求解即可【詳解】解:函數(shù),將函數(shù)圖象向左平移個單位可得的圖象故選:10、D【解析】由三視圖知,從正面和側面看都是梯形,從上面看為圓形,下面看是圓形,并且可以想象到該幾何體是圓臺,則該幾何體可以是圓臺故選D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)題意得,進而根據(jù)扇形面積公式計算即可得答案.【詳解】解:根據(jù)題意,只需計算圖中陰影部分的面積,設,因為弧田的弧長為,弧所在的圓的半徑為4,所以,所以陰影部分的面積為所以弧田的面積是.故答案為:12、【解析】根據(jù)半保值函數(shù)的定義,將問題轉化為與的圖象有兩個不同的交點,即有兩個不同的根,換元后轉化為二次方程的實根的分布可解得.【詳解】因為函數(shù)且是“半保值函數(shù)”,且定義域為,由時,在上單調遞增,在單調遞增,可得為上的增函數(shù);同樣當時,仍為上的增函數(shù),在其定義域內為增函數(shù),因為函數(shù)且是“半保值函數(shù)”,所以與的圖象有兩個不同的交點,所以有兩個不同的根,即有兩個不同的根,即有兩個不同的根,可令,,即有有兩個不同正數(shù)根,可得,且,解得.【點睛】本題考查函數(shù)的值域的求法,解題的關鍵是正確理解“半保值函數(shù)”,解題時要認真審題,仔細解答,注意合理地進行等價轉化13、【解析】由,,結合映射的定義可判斷;由由,解不等式可判斷;由輔助角公式和正弦函數(shù)的值域,可判斷;由正弦函數(shù)的對稱軸,可判斷;由的圖象可判斷交點個數(shù),可判斷【詳解】由于,,B中無元素對應,故錯誤;函數(shù)的定義域為,由,可得,則函數(shù)的定義域也是,故正確;由于的最大值為,,故不正確;由為最小值,是函數(shù)的對稱軸方程,故正確;曲線和直線的公共點個數(shù)為m,如圖所示,m可能為0,2,3,4,則m不可能為1,故正確,故答案為【點睛】本題主要考查函數(shù)的定義域、值域和對稱性、圖象交點個數(shù),考查運算能力和推理能力,屬于基礎題14、[1,+∞)【解析】由指數(shù)函數(shù)的性質化簡集合;由對數(shù)函數(shù)的性質化簡集合,利用補集的定義求解即可.【詳解】,所以,故答案為.【點睛】研究集合問題,一定要抓住元素,看元素應滿足的屬性.研究兩集合的關系時,關鍵是將兩集合的關系轉化為元素間的關系,本題實質求滿足屬于集合且不屬于集合的元素的集合.15、①②④【解析】如圖所示,取中點,則,,所以平面,從而可得,故①正確;設正方形邊長為,則,所以,又因為,所以是等邊三角形,故②正確;分別取,的中點為,,連接,,.則,且,,且,則是異面直線,所成的角在中,,,∴則是正三角形,故,③錯誤;如上圖所示,由題意可得:,則,由可得,據(jù)此可知:為二面角的平面角,說法④正確.故答案為:①②④.點睛:(1)有關折疊問題,一定要分清折疊前后兩圖形(折前的平面圖形和折疊后的空間圖形)各元素間的位置和數(shù)量關系,哪些變,哪些不變(2)研究幾何體表面上兩點的最短距離問題,常選擇恰當?shù)哪妇€或棱展開,轉化為平面上兩點間的最短距離問題16、【解析】△ABC中,由tanA=1,求得A的值【詳解】∵△ABC中,tanA=1>0,故∴A=故答案為【點睛】本題主要考查三角函數(shù)的化簡,及與三角形的綜合,應注意三角形內角的范圍三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)單調增區(qū)間為;單調減區(qū)間為.【解析】(1)先化簡得函數(shù)f(x)=sin,解不等式2x-=kπ+(k∈Z)即得函數(shù)y=f(x)圖象的對稱軸方程.(2)先求函數(shù)的單調遞增區(qū)間為(k∈Z),再給k取值,得到函數(shù)f(x)在上的單調性.【詳解】(1)∵f(x)=sinωx-cosωx=sin,且T=π,∴ω=2.于是,f(x)=sin.令2x-=kπ+(k∈Z),得x=+(k∈Z),故函數(shù)f(x)的對稱軸方程為x=+(k∈Z).(2)令2kπ-≤2x-≤2kπ+(k∈Z),得函數(shù)f(x)的單調遞增區(qū)間為(k∈Z).注意到x∈,令k=0,得函數(shù)f(x)在上的單調遞增區(qū)間為;其單調遞減區(qū)間為.【點睛】(1)本題主要考查三角函數(shù)的圖像和性質,意在考查學生對這些知識的掌握說和分析推理能力.(2)一般利用復合函數(shù)的單調性原理求復合函數(shù)的單調區(qū)間,首先是對復合函數(shù)進行分解,接著是根據(jù)復合函數(shù)的單調性原理分析出分解出的函數(shù)的單調性,最后根據(jù)分解函數(shù)的單調性求出復合函數(shù)的單調區(qū)間.18、(1);(2)①.答案見解析;②..【解析】(1)為上的單調增函數(shù),故值域為.(2)計算得,由此得到的單調性和最值,而有兩個不同的根則可轉化為與的函數(shù)圖像有兩個不同的交點去考慮.解析:(1)∵函數(shù)在區(qū)間上單調遞減,函數(shù)在區(qū)間上單調遞增,∴函數(shù)在區(qū)間上單調遞增,故,即,所以函數(shù)在區(qū)間上的值域為.(2)當時,有,故;當時,,故,故,由(1)知:在區(qū)間上單調遞增,在區(qū)間上單調遞減,故,∴函數(shù)的單調遞增區(qū)間為,單調遞減區(qū)間為.有最大值4,無最小值.②∵在上單調遞減,∴.又在上單調遞增,∴.∴要使方程有兩個不同的實根,則需滿足.即的取值范圍是.點睛:求函數(shù)值域,優(yōu)先函數(shù)的單調性,對于形如的函數(shù),其圖像是兩個圖像中的較低者.19、(1)增區(qū)間是[kπ-,kπ+],k∈Z(2)【解析】首先根據(jù)已知條件,求出周期,進而求出的值,確定出函數(shù)解析式,由正弦函數(shù)的遞增區(qū)間,,即可求出的遞增區(qū)間由確定出的函數(shù)解析式,根據(jù)的范圍求出這個角的范圍,利用正弦函數(shù)的圖象與性質即可求出函數(shù)的最大值,即可得到的值解析:已知由,則T=π=,∴w=2∴(1)令-+2kπ≤2x+≤+2kπ則-+kπ≤x≤+kπ故f(x)的增區(qū)間是[kπ-,kπ+],k∈Z(2)當x∈[0,]時,≤2x+≤∴sin(2x+)∈[-,1]∴∴點睛:這是一道求三角函數(shù)遞增區(qū)間以及利用函數(shù)在某區(qū)間的最大值求得參數(shù)的題目,主要考查了兩角和的正弦函數(shù)公式,正弦函數(shù)的單調性,以及正弦函數(shù)的定義域和值域,解題的關鍵是熟練掌握正弦函數(shù)的性質,屬于中檔題20、(1),;(2);(3)【解析】(1)由已知中函數(shù),,當時,恒有,我們可以構造一個關于方程組,解方程組求出的值,進而得到的表達式;(2)轉化為,解得,可求出滿足條件的實數(shù)的取值范圍.(3)根據(jù)對數(shù)的運算性質,轉化為一個關于的分式方程組,進而根據(jù)方程的解集為,則方程組至少一個方程無解或兩個方程的解集的交集為空集,分類討論后,即可得到答案.【詳解】(1)∵當時,,即,即,整理得恒成立,∴,又,即,從而∴,∵,∴,或,∴的定義域為(2)方程有解,即,∴,∴,∴,∴,或,解得或,∴實數(shù)的取值范圍(3)方程的解集為,∴,∴,∴,方程的解集為,故有兩種情況:①方程無解,即,得,②方程有解,兩根均在內,,則解得綜合①②得實數(shù)的取值范圍是【點睛】關鍵點點睛:函數(shù)與方程、對數(shù)函數(shù)的單調性解不等式以及一元二次方程根的分布,綜合性比較強,根據(jù)轉化思想,不斷轉化是解題的關鍵,考查了分類討論的思想,屬于難題.21、(1);(2);(3)25.【解析】(1)設AB所在的直線方程為P=kt+20,將B點代入可得k值,由CD兩點坐標可得直線CD所在的兩點式方程,進而可得銷售價格P(元)與時間t的分段函數(shù)關系式(2)設Q=k1t+b,把兩點(5,35),(15,25)的坐標代入,可得日銷售量Q隨時間t變化的函數(shù)的解析式(3)設日銷售金額為y,根據(jù)銷售金額=銷售價格×日銷售量,結合(1)(2)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 掛靠公司的車終止合同范本(2篇)
- 二零二五年度出租車司機職業(yè)發(fā)展規(guī)劃合同樣本3篇
- 二零二五年份農家院農業(yè)觀光園租賃管理合同4篇
- 2025年度專業(yè)培訓中心場地租賃及配套設施租賃合同3篇
- 2025年度煤炭鐵路運輸合同爭議解決機制
- 2025年度危險化學品運輸安全管理合同4篇
- 2025年度南京琴行教師學生家長溝通與協(xié)作合同4篇
- 二零二五年度城市地下空間開發(fā)利用承包經營合同4篇
- 二零二五版木材行業(yè)木方板材庫存管理合同范本3篇
- 二零二五年度美團商家入駐信息安全管理合同4篇
- 2025年度杭州市固廢處理與資源化利用合同3篇
- 部編版二年級下冊《道德與法治》教案及反思(更新)
- 充電樁項目運營方案
- 退休人員出國探親申請書
- 傷殘撫恤管理辦法實施細則
- 高中物理競賽真題分類匯編 4 光學 (學生版+解析版50題)
- 西方經濟學-高鴻業(yè)-筆記
- 幼兒園美術教育研究策略國內外
- 物業(yè)公司介紹
- 2024屆河南省五市高三第一次聯(lián)考英語試題及答案
- 【永輝超市公司員工招聘問題及優(yōu)化(12000字論文)】
評論
0/150
提交評論