版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024屆甘肅省白銀市會寧縣第四中學(xué)高三3月調(diào)研考試數(shù)學(xué)試題含附加題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將1到2020這2020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項(xiàng)之和為()A.56383 B.57171 C.59189 D.612422.已知數(shù)列中,,且當(dāng)為奇數(shù)時,;當(dāng)為偶數(shù)時,.則此數(shù)列的前項(xiàng)的和為()A. B. C. D.3.如圖,圓是邊長為的等邊三角形的內(nèi)切圓,其與邊相切于點(diǎn),點(diǎn)為圓上任意一點(diǎn),,則的最大值為()A. B. C.2 D.4.已知點(diǎn)P不在直線l、m上,則“過點(diǎn)P可以作無數(shù)個平面,使得直線l、m都與這些平面平行”是“直線l、m互相平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.已知,若對任意,關(guān)于x的不等式(e為自然對數(shù)的底數(shù))至少有2個正整數(shù)解,則實(shí)數(shù)a的取值范圍是()A. B. C. D.6.在中,內(nèi)角所對的邊分別為,若依次成等差數(shù)列,則()A.依次成等差數(shù)列 B.依次成等差數(shù)列C.依次成等差數(shù)列 D.依次成等差數(shù)列7.已知,,由程序框圖輸出的為()A.1 B.0 C. D.8.設(shè)集合(為實(shí)數(shù)集),,,則()A. B. C. D.9.二項(xiàng)式的展開式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則展開式中的常數(shù)項(xiàng)是()A.180 B.90 C.45 D.36010.如圖所示,三國時代數(shù)學(xué)家趙爽在《周髀算經(jīng)》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設(shè)直角三角形有一內(nèi)角為,若向弦圖內(nèi)隨機(jī)拋擲500顆米粒(米粒大小忽略不計(jì),?。?,則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為()A.134 B.67 C.182 D.10811.已知雙曲線的實(shí)軸長為,離心率為,、分別為雙曲線的左、右焦點(diǎn),點(diǎn)在雙曲線上運(yùn)動,若為銳角三角形,則的取值范圍是()A. B. C. D.12.某幾何體的三視圖如圖所示,若側(cè)視圖和俯視圖均是邊長為的等邊三角形,則該幾何體的體積為A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知實(shí)數(shù),對任意,有,且,則______.14.的展開式中的系數(shù)為__________(用具體數(shù)據(jù)作答).15.已知點(diǎn)是拋物線的焦點(diǎn),,是該拋物線上的兩點(diǎn),若,則線段中點(diǎn)的縱坐標(biāo)為__________.16.(5分)函數(shù)的定義域是____________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若函數(shù),試討論的單調(diào)性;(2)若,,求的取值范圍.18.(12分)如圖,已知四棱錐的底面是等腰梯形,,,,,為等邊三角形,且點(diǎn)P在底面上的射影為的中點(diǎn)G,點(diǎn)E在線段上,且.(1)求證:平面.(2)求二面角的余弦值.19.(12分)某超市在節(jié)日期間進(jìn)行有獎促銷,規(guī)定凡在該超市購物滿400元的顧客,均可獲得一次摸獎機(jī)會.摸獎規(guī)則如下:獎盒中放有除顏色不同外其余完全相同的4個球(紅、黃、黑、白).顧客不放回的每次摸出1個球,若摸到黑球則摸獎停止,否則就繼續(xù)摸球.按規(guī)定摸到紅球獎勵20元,摸到白球或黃球獎勵10元,摸到黑球不獎勵.(1)求1名顧客摸球2次摸獎停止的概率;(2)記X為1名顧客摸獎獲得的獎金數(shù)額,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.20.(12分)十八大以來,黨中央提出要在2020年實(shí)現(xiàn)全面脫貧,為了實(shí)現(xiàn)這一目標(biāo),國家對“新農(nóng)合”(新型農(nóng)村合作醫(yī)療)推出了新政,各級財(cái)政提高了對“新農(nóng)合”的補(bǔ)助標(biāo)準(zhǔn).提高了各項(xiàng)報(bào)銷的比例,其中門診報(bào)銷比例如下:表1:新農(nóng)合門診報(bào)銷比例醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院門診報(bào)銷比例60%40%30%20%根據(jù)以往的數(shù)據(jù)統(tǒng)計(jì),李村一個結(jié)算年度門診就診人次情況如下:表2:李村一個結(jié)算年度門診就診情況統(tǒng)計(jì)表醫(yī)院類別村衛(wèi)生室鎮(zhèn)衛(wèi)生院二甲醫(yī)院三甲醫(yī)院一個結(jié)算年度內(nèi)各門診就診人次占李村總就診人次的比例70%10%15%5%如果一個結(jié)算年度每人次到村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院門診平均費(fèi)用分別為50元、100元、200元、500元.若李村一個結(jié)算年度內(nèi)去門診就診人次為2000人次.(Ⅰ)李村在這個結(jié)算年度內(nèi)去三甲醫(yī)院門診就診的人次中,60歲以上的人次占了80%,從去三甲醫(yī)院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的概率是多少?(Ⅱ)如果將李村這個結(jié)算年度內(nèi)門診就診人次占全村總就診人次的比例視為概率,求李村這個結(jié)算年度每人次用于門診實(shí)付費(fèi)用(報(bào)銷后個人應(yīng)承擔(dān)部分)的分布列與期望.21.(12分)在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研發(fā)投入.為了對新研發(fā)的產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格試銷,得到一組檢測數(shù)據(jù)如表所示:試銷價(jià)格(元)產(chǎn)品銷量(件)已知變量且有線性負(fù)相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學(xué)通過計(jì)算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學(xué)的計(jì)算結(jié)果是正確的.(1)試判斷誰的計(jì)算結(jié)果正確?(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機(jī)抽取個,求“理想數(shù)據(jù)”的個數(shù)為的概率.22.(10分)已知函數(shù)f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對任意,都有恒成立,求實(shí)數(shù)a的取值范圍;(3)證明:對一切,都有成立.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
根據(jù)“被5除余3且被7除余2的正整數(shù)”,可得這些數(shù)構(gòu)成等差數(shù)列,然后根據(jù)等差數(shù)列的前項(xiàng)和公式,可得結(jié)果.【詳解】被5除余3且被7除余2的正整數(shù)構(gòu)成首項(xiàng)為23,公差為的等差數(shù)列,記數(shù)列則令,解得.故該數(shù)列各項(xiàng)之和為.故選:C.【點(diǎn)睛】本題考查等差數(shù)列的應(yīng)用,屬基礎(chǔ)題。2、A【解析】
根據(jù)分組求和法,利用等差數(shù)列的前項(xiàng)和公式求出前項(xiàng)的奇數(shù)項(xiàng)的和,利用等比數(shù)列的前項(xiàng)和公式求出前項(xiàng)的偶數(shù)項(xiàng)的和,進(jìn)而可求解.【詳解】當(dāng)為奇數(shù)時,,則數(shù)列奇數(shù)項(xiàng)是以為首項(xiàng),以為公差的等差數(shù)列,當(dāng)為偶數(shù)時,,則數(shù)列中每個偶數(shù)項(xiàng)加是以為首項(xiàng),以為公比的等比數(shù)列.所以.故選:A【點(diǎn)睛】本題考查了數(shù)列分組求和、等差數(shù)列的前項(xiàng)和公式、等比數(shù)列的前項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.3、C【解析】
建立坐標(biāo)系,寫出相應(yīng)的點(diǎn)坐標(biāo),得到的表達(dá)式,進(jìn)而得到最大值.【詳解】以D點(diǎn)為原點(diǎn),BC所在直線為x軸,AD所在直線為y軸,建立坐標(biāo)系,設(shè)內(nèi)切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據(jù)三角形面積公式得到,可得到內(nèi)切圓的半徑為可得到點(diǎn)的坐標(biāo)為:故得到故得到,故最大值為:2.故答案為C.【點(diǎn)睛】這個題目考查了向量標(biāo)化的應(yīng)用,以及參數(shù)方程的應(yīng)用,以向量為載體求相關(guān)變量的取值范圍,是向量與函數(shù)、不等式、三角函數(shù)等相結(jié)合的一類綜合問題.通過向量的運(yùn)算,將問題轉(zhuǎn)化為解不等式或求函數(shù)值域,是解決這類問題的一般方法.4、C【解析】
根據(jù)直線和平面平行的性質(zhì),結(jié)合充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】點(diǎn)不在直線、上,若直線、互相平行,則過點(diǎn)可以作無數(shù)個平面,使得直線、都與這些平面平行,即必要性成立,若過點(diǎn)可以作無數(shù)個平面,使得直線、都與這些平面平行,則直線、互相平行成立,反證法證明如下:若直線、互相不平行,則,異面或相交,則過點(diǎn)只能作一個平面同時和兩條直線平行,則與條件矛盾,即充分性成立則“過點(diǎn)可以作無數(shù)個平面,使得直線、都與這些平面平行”是“直線、互相平行”的充要條件,故選:.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,結(jié)合空間直線和平面平行的性質(zhì)是解決本題的關(guān)鍵.5、B【解析】
構(gòu)造函數(shù)(),求導(dǎo)可得在上單調(diào)遞增,則,問題轉(zhuǎn)化為,即至少有2個正整數(shù)解,構(gòu)造函數(shù),,通過導(dǎo)數(shù)研究單調(diào)性,由可知,要使得至少有2個正整數(shù)解,只需即可,代入可求得結(jié)果.【詳解】構(gòu)造函數(shù)(),則(),所以在上單調(diào)遞增,所以,故問題轉(zhuǎn)化為至少存在兩個正整數(shù)x,使得成立,設(shè),,則,當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞增.,整理得.故選:B.【點(diǎn)睛】本題考查導(dǎo)數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,考查不等式成立問題中求解參數(shù)問題,考查學(xué)生分析問題的能力和邏輯推理能力,難度較難.6、C【解析】
由等差數(shù)列的性質(zhì)、同角三角函數(shù)的關(guān)系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結(jié)果.【詳解】依次成等差數(shù)列,,正弦定理得,由余弦定理得,,即依次成等差數(shù)列,故選C.【點(diǎn)睛】本題主要考查等差數(shù)列的定義、正弦定理、余弦定理,屬于難題.解三角形時,有時可用正弦定理,有時也可用余弦定理,應(yīng)注意用哪一個定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到.7、D【解析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點(diǎn):1、程序框圖;2、定積分.8、A【解析】
根據(jù)集合交集與補(bǔ)集運(yùn)算,即可求得.【詳解】集合,,所以所以故選:A【點(diǎn)睛】本題考查了集合交集與補(bǔ)集的混合運(yùn)算,屬于基礎(chǔ)題.9、A【解析】試題分析:因?yàn)榈恼归_式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,所以,,令,則,.考點(diǎn):1.二項(xiàng)式定理;2.組合數(shù)的計(jì)算.10、B【解析】
根據(jù)幾何概型的概率公式求出對應(yīng)面積之比即可得到結(jié)論.【詳解】解:設(shè)大正方形的邊長為1,則小直角三角形的邊長為,
則小正方形的邊長為,小正方形的面積,
則落在小正方形(陰影)內(nèi)的米粒數(shù)大約為,
故選:B.【點(diǎn)睛】本題主要考查幾何概型的概率的應(yīng)用,求出對應(yīng)的面積之比是解決本題的關(guān)鍵.11、A【解析】
由已知先確定出雙曲線方程為,再分別找到為直角三角形的兩種情況,最后再結(jié)合即可解決.【詳解】由已知可得,,所以,從而雙曲線方程為,不妨設(shè)點(diǎn)在雙曲線右支上運(yùn)動,則,當(dāng)時,此時,所以,,所以;當(dāng)軸時,,所以,又為銳角三角形,所以.故選:A.【點(diǎn)睛】本題考查雙曲線的性質(zhì)及其應(yīng)用,本題的關(guān)鍵是找到為銳角三角形的臨界情況,即為直角三角形,是一道中檔題.12、C【解析】
由三視圖可知,該幾何體是三棱錐,底面是邊長為的等邊三角形,三棱錐的高為,所以該幾何體的體積,故選C.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】
由二項(xiàng)式定理及展開式系數(shù)的求法得,又,所以,令得:,所以,得解.【詳解】由,且,則,又,所以,令得:,所以,故答案為:.【點(diǎn)睛】本題考查了二項(xiàng)式定理及展開式系數(shù)的求法,意在考查學(xué)生對這些知識的理解掌握水平.14、【解析】
利用二項(xiàng)展開式的通項(xiàng)公式可求的系數(shù).【詳解】的展開式的通項(xiàng)公式為,令,故,故的系數(shù)為.故答案為:.【點(diǎn)睛】本題考查二項(xiàng)展開式中指定項(xiàng)的系數(shù),注意利用通項(xiàng)公式來計(jì)算,本題屬于容易題.15、2【解析】
運(yùn)用拋物線的定義將拋物線上的點(diǎn)到焦點(diǎn)距離等于到準(zhǔn)線距離,然后求解結(jié)果.【詳解】拋物線的標(biāo)準(zhǔn)方程為:,則拋物線的準(zhǔn)線方程為,設(shè),,則,所以,則線段中點(diǎn)的縱坐標(biāo)為.故答案為:【點(diǎn)睛】本題考查了拋物線的定義,由拋物線定義將點(diǎn)到焦點(diǎn)距離轉(zhuǎn)化為點(diǎn)到準(zhǔn)線距離,需要熟練掌握定義,并能靈活運(yùn)用,本題較為基礎(chǔ).16、【解析】
要使函數(shù)有意義,則,即,解得,故函數(shù)的定義域是.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案不唯一,具體見解析(2)【解析】
(1)由于函數(shù),得出,分類討論當(dāng)和時,的正負(fù),進(jìn)而得出的單調(diào)性;(2)求出,令,得,設(shè),通過導(dǎo)函數(shù),可得出在上的單調(diào)性和值域,再分類討論和時,的單調(diào)性,再結(jié)合,恒成立,即可求出的取值范圍.【詳解】解:(1)因?yàn)椋?,①?dāng)時,,在上單調(diào)遞減.②當(dāng)時,令,則;令,則,所以在單調(diào)遞增,在上單調(diào)遞減.綜上所述,當(dāng)時,在上單調(diào)遞減;當(dāng)時,在上單調(diào)遞增,在上單調(diào)遞減.(2)因?yàn)?,可知,,令,?設(shè),則.當(dāng)時,,在上單調(diào)遞增,所以在上的值域是,即.當(dāng)時,沒有實(shí)根,且,在上單調(diào)遞減,,符合題意.當(dāng)時,,所以有唯一實(shí)根,當(dāng)時,,在上單調(diào)遞增,,不符合題意.綜上,,即的取值范圍為.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和根據(jù)恒成立問題求參數(shù)范圍,還運(yùn)用了構(gòu)造函數(shù)法,還考查分類討論思想和計(jì)算能力,屬于難題.18、(1)證明見解析(2)【解析】
(1)由等腰梯形的性質(zhì)可證得,由射影可得平面,進(jìn)而求證;(2)取的中點(diǎn)F,連接,以G為原點(diǎn),所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標(biāo)系,分別求得平面與平面的法向量,再利用數(shù)量積求解即可.【詳解】(1)在等腰梯形中,點(diǎn)E在線段上,且,點(diǎn)E為上靠近C點(diǎn)的四等分點(diǎn),,,,,點(diǎn)P在底面上的射影為的中點(diǎn)G,連接,平面,平面,.又,平面,平面,平面.(2)取的中點(diǎn)F,連接,以G為原點(diǎn),所在直線為x軸,所在直線為y軸,所在直線為z軸,建立空間直角坐標(biāo)系,如圖所示,由(1)易知,,,又,,,為等邊三角形,,則,,,,,,,,,設(shè)平面的法向量為,則,即,令,則,,,設(shè)平面的法向量為,則,即,令,則,,,設(shè)平面與平面的夾角為θ,則二面角的余弦值為.【點(diǎn)睛】本題考查線面垂直的證明,考查空間向量法求二面角,考查運(yùn)算能力與空間想象能力.19、(1);(2)20.【解析】
(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,即求概率;(2)的可能取值為:0,10,20,30,1.分別求出取各個值時的概率,即可求出分布列和數(shù)學(xué)期望.【詳解】(1)1名顧客摸球2次摸獎停止,說明第一次是從紅球、黃球、白球中摸一球,第二次摸的是黑球,所以1名顧客摸球2次摸獎停止的概率.(2)的可能取值為:0,10,20,30,1.,∴隨機(jī)變量X的分布列為:X01020301P數(shù)學(xué)期望.【點(diǎn)睛】本題主要考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望,屬于中檔題.20、(Ⅰ);(Ⅱ)的發(fā)分布列為:X2060140400P0.70.10.150.05期望.【解析】
(Ⅰ)由表2可得去各個門診的人次比例可得2000人中各個門診的人數(shù),即可知道去三甲醫(yī)院的總?cè)藬?shù),又有60歲所占的百分比可得60歲以上的人數(shù),進(jìn)而求出任選2人60歲以上的概率;(Ⅱ)由去各門診結(jié)算的平均費(fèi)用及表1所報(bào)的百分比可得隨機(jī)變量的可能取值,再由概率可得的分布列,進(jìn)而求出概率.【詳解】解:(Ⅰ)由表2可得李村一個結(jié)算年度內(nèi)去門診就診人次為2000人次,分別去村衛(wèi)生室、鎮(zhèn)衛(wèi)生院、二甲醫(yī)院、三甲醫(yī)院人數(shù)為,,,,而三甲醫(yī)院門診就診的人次中,60歲以上的人次占了,所以去三甲醫(yī)院門診就診的人次中,60歲以上的人數(shù)為:人,設(shè)從去三甲醫(yī)院門診就診的人次中任選2人次,恰好2人次都是60歲以上人次的事件記為,則;(Ⅱ)由題意可得隨機(jī)變量的可能取值為:,,,,,,,,所以的發(fā)分布列為:X2060140400P0.70.10.150.05所以可得期望.【點(diǎn)睛】本題主要考查互斥事件、隨機(jī)事件的概率計(jì)算公式、分布列及其數(shù)學(xué)期望、組合計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.21、(1)乙同學(xué)正確;(2).【解析】
(1)根據(jù)變量且有線性負(fù)相關(guān)關(guān)系判斷甲不正確.根據(jù)回歸直線方程過樣本中心點(diǎn),判斷出乙正確.(2)由線性回歸方程得到的估計(jì)數(shù)據(jù),計(jì)算出誤差,求得“理想數(shù)據(jù)”的個數(shù),
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 股份轉(zhuǎn)讓協(xié)議書范本(個人)
- 技術(shù)設(shè)備融資租賃合同書
- 工業(yè)園基礎(chǔ)設(shè)施建設(shè)投資開發(fā)合同
- 服裝行業(yè)一二級經(jīng)銷商協(xié)議書
- 導(dǎo)游合同范文
- 2025年自愿離婚協(xié)議書3
- 快餐店管理制度模版(2篇)
- 2025年二年級語文教學(xué)總結(jié)模版(2篇)
- 保險(xiǎn)經(jīng)紀(jì)人管理規(guī)定范文(2篇)
- 2025年安全管理制度考核細(xì)則(2篇)
- DB32∕T 3377-2018 城市公共建筑人防工程規(guī)劃設(shè)計(jì)規(guī)范
- 中建三局住宅工程精益建造實(shí)施指南
- 分布式光伏發(fā)電項(xiàng)目并網(wǎng)驗(yàn)收意見單
- 網(wǎng)站隱私政策模板
- YY∕T 1831-2021 梅毒螺旋體抗體檢測試劑盒(免疫層析法)
- 消弧產(chǎn)品規(guī)格實(shí)用標(biāo)準(zhǔn)化規(guī)定
- 裝飾裝修工程施工合理化建議和降低成本措施提要:完整
- 第十四章35kV變電站保護(hù)整定值計(jì)算實(shí)例
- 液態(tài)模鍛工藝介紹
- 水泵水輪機(jī)結(jié)構(gòu)介紹
- 井式爐課程設(shè)計(jì)說明書
評論
0/150
提交評論