江西省大余縣新城中學(xué)2025屆數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第1頁
江西省大余縣新城中學(xué)2025屆數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第2頁
江西省大余縣新城中學(xué)2025屆數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第3頁
江西省大余縣新城中學(xué)2025屆數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第4頁
江西省大余縣新城中學(xué)2025屆數(shù)學(xué)高二上期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

江西省大余縣新城中學(xué)2025屆數(shù)學(xué)高二上期末質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在中,角,,所對的邊分別為,,,若,則的形狀為()A.銳角三角形 B.直角三角形C.鈍角三角形 D.不確定2.設(shè),若函數(shù),有大于零的極值點,則A. B.C. D.3.若雙曲線的焦距為,則雙曲線的漸近線方程為()A. B.C. D.4.已知圓:,是直線的一點,過點作圓的切線,切點為,,則的最小值為()A. B.C. D.5.直線的方向向量為()A. B.C. D.6.設(shè)曲線在點處的切線與x軸、y軸分別交于A,B兩點,O為坐標(biāo)原點,則的面積等于()A.1 B.2C.4 D.67.如圖,兩個半徑為R的相交大圓,分別內(nèi)含一個半徑為r的同心小圓,且同心小圓均與另一個大圓外切.已知時,在兩相交大圓的區(qū)域內(nèi)隨機取一點,則該點取自兩大圓公共部分的概率為()A. B.C. D.8.已知直線和圓相交于兩點.若,則的值為()A. B.C. D.9.在正三棱錐中,,且,M,N分別為BC,AD的中點,則直線AM和CN夾角的余弦值為()A. B.C. D.10.已知F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點,過F1的直線l交橢圓于M,N兩點,若△MF2N的周長為8,則橢圓方程為()A. B.C. D.11.將6位志愿者分成4組,其中兩個組各2人,另兩個組各1人,分赴廣交會的四個不同地方服務(wù),不同的分配方案有()種A.· B.·C. D.12.已知函數(shù),其導(dǎo)函數(shù)的圖象如圖所示,則()A.在上為減函數(shù) B.在處取極小值C.在上為減函數(shù) D.在處取極大值二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓C:,點M與C的焦點不重合,若M關(guān)于C的焦點的對稱點分別為A,B,線段MN的中點在C上,則_________.14.1202年意大利數(shù)學(xué)家列昂那多-斐波那契以兔子繁殖為例,引人“兔子數(shù)列”,又稱斐波那契數(shù)列.即該數(shù)列中的數(shù)字被人們稱為神奇數(shù),在現(xiàn)代物理,化學(xué)等領(lǐng)域都有著廣泛的應(yīng)用.若此數(shù)列各項被3除后的余數(shù)構(gòu)成一新數(shù)列,則數(shù)列的前2022項的和為________.15.某市有30000人參加階段性學(xué)業(yè)水平檢測,檢測結(jié)束后的數(shù)學(xué)成績X服從正態(tài)分布,若,則成績在140分以上的大約為______人16.設(shè),是雙曲線的兩個焦點,P是雙曲線上任意一點,過作平分線的垂線,垂足為M,則點M到直線的距離的最小值是___三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求函數(shù)的單調(diào)區(qū)間;(2)當(dāng)時,求函數(shù)的值域.18.(12分)如圖所示,在直三棱柱中,是等腰直角三角形,(1)證明:;(2)若點E是棱的中點,求平面與平面所成銳二面角的余弦值19.(12分)已知圓經(jīng)過,且圓心C在直線上(1)求圓的標(biāo)準(zhǔn)方程;(2)若直線:與圓存在公共點,求實數(shù)的取值范圍20.(12分)已知,以點為圓心圓被軸截得的弦長為.(1)求圓的方程;(2)若過點的直線與圓相切,求直線的方程.21.(12分)已知拋物線的方程為,點,過點的直線交拋物線于,兩點(1)是否為定值?若是,求出該定值;若不是,說明理由;(2)若點是直線上的動點,且,求面積的最小值22.(10分)已知點及圓,點P是圓B上任意一點,線段的垂直平分線l交半徑于點T,當(dāng)點P在圓上運動時,記點T的軌跡為曲線E(1)求曲線E的方程;(2)設(shè)存在斜率不為零且平行的兩條直線,,它們與曲線E分別交于點C、D、M、N,且四邊形是菱形,求該菱形周長的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由正弦定理得出,再由余弦定理得出,從而判斷為鈍角得出的形狀.【詳解】因為,所以,所以,所以的形狀為鈍角三角形.故選:C2、B【解析】設(shè),則,若函數(shù)在x∈R上有大于零的極值點即有正根,當(dāng)有成立時,顯然有,此時.由,得參數(shù)a的范圍為.故選B考點:利用導(dǎo)數(shù)研究函數(shù)的極值3、A【解析】由焦距為可得,又,進而可得,最后根據(jù)焦點在軸上的雙曲線的漸近線方程為即可求解.【詳解】解:因為雙曲線的焦距為,所以,所以,解得,所以,所以雙曲線的漸近線方程為,即,故選:A.4、A【解析】根據(jù)題意,為四邊形的面積的2倍,即,然后利用切線長定理,將問題轉(zhuǎn)化為圓心到直線的距離求解.【詳解】圓:的圓心為,半徑,設(shè)四邊形的面積為,由題設(shè)及圓的切線性質(zhì)得,,∵,∴,圓心到直線的距離為,∴的最小值為,則的最小值為,故選:A5、D【解析】根據(jù)直線方程,求得斜率k,分析即可得直線的方向向量.【詳解】直線變形可得,所以直線的斜率,所以向量為直線的一個方向向量,因為,所以向量為直線的方向向量,故選:D6、C【解析】求出原函數(shù)的導(dǎo)函數(shù),得到函數(shù)在處的導(dǎo)數(shù)值,寫出切線方程,分別求得切線在兩坐標(biāo)軸上的坐標(biāo),再由三角形面積公式求解【詳解】由,得,,又切線過點,曲線在點處的切線方程為,取,得,取,得的面積等于故選:C7、C【解析】設(shè)D為線段AB的中點,求得,在中,可得.進而求得兩大圓公共部分的面積為:,利用幾何概型計算即可得出結(jié)果.【詳解】如圖,設(shè)D為線段AB的中點,,在中,.兩大圓公共部分的面積為:,則該點取自兩大圓公共部分的概率為.故選:C.8、C【解析】求出圓心到直線的距離,再利用,化簡求值,即可得到答案.【詳解】圓的圓心為,圓心到直線的距離公式為,故故選:C.9、B【解析】由題意可得兩兩垂直,所以以為原點,所在的直線分別為軸,建立空間直角坐標(biāo)系,利用空間向量求解【詳解】因為,所以兩兩垂直,所以以為原點,所在的直線分別為軸,建立空間直角坐標(biāo)系,如圖所示,因為,所以,因為M,N分別為BC,AD的中點,所以,所以,設(shè)直線AM和CN所成的角為,則,所以直線AM和CN夾角的余弦值為,故選:B10、A【解析】由題得c=1,再根據(jù)△MF2N的周長=4a=8得a=2,進而求出b的值得解.【詳解】∵F1(-1,0),F(xiàn)2(1,0)是橢圓的兩個焦點,∴c=1,又根據(jù)橢圓的定義,△MF2N的周長=4a=8,得a=2,進而得b=,所以橢圓方程為.故答案為A【點睛】本題主要考查橢圓的定義和橢圓方程的求法,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.11、B【解析】先按要求分為四組,再四個不同地方,四個組進行全排列.【詳解】兩個組各2人,兩個組各1人,屬于部分平均分組,要除以平均分組的組數(shù)的全排列,故分組方案有種,再將分得的4組,分配到四個不同地方服務(wù),則不同的分配方案有種.故選:B12、C【解析】首先利用導(dǎo)函數(shù)的圖像求和的解,進而得到函數(shù)的單調(diào)區(qū)間和極值點.【詳解】由導(dǎo)函數(shù)的圖象可知:當(dāng)時,或;當(dāng)時,或,所以的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為和,故在處取得極大值,在處取得極小值,在處取得極大值.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設(shè)M,N的中點坐標(biāo)為P,,則;由于,化簡可得,根據(jù)橢圓的定義==6,所以12.考點:1.橢圓的定義;2.兩點距離公式.14、【解析】由數(shù)列各項除以3的余數(shù),可得為,知是周期為8的數(shù)列,即可求出數(shù)列的前2022項的和.【詳解】由數(shù)列各項除以3的余數(shù),可得為,是周期為8的數(shù)列,一個周期中八項和為,又,數(shù)列的前2022項的和.故答案為:.15、150【解析】根據(jù)考試的成績X服從正態(tài)分布.得到考試的成績X的正太密度曲線關(guān)于對稱,根據(jù),得到,根據(jù)頻率乘以樣本容量得到這個分?jǐn)?shù)段上的人數(shù)【詳解】由題意,考試的成績X服從正態(tài)分布考試的成績X的正太密度曲線關(guān)于對稱,,,,該市成績在140分以上的人數(shù)為故答案為:15016、1【解析】構(gòu)造全等三角形,結(jié)合雙曲線定義,求得點的軌跡方程,再根據(jù)直線與圓的位置關(guān)系,即可求得點到直線距離的最小值.【詳解】延長交的延長線于點,如下所示:因為平分,且,故△△,則,又,則,又在△中,分別為的中點,故可得;設(shè)點的坐標(biāo)為,則,即點在圓心為,半徑的圓上,圓心到直線的距離,故點到直線距離的最小值為.故答案為:.【點睛】本題考查雙曲線的定義,以及直線與圓的位置關(guān)系,解決問題的關(guān)鍵在于通過幾何關(guān)系求得點的軌跡方程,屬中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)單調(diào)遞增區(qū)間(?∞,?1)和(4,+∞),單調(diào)遞減區(qū)間(?1,4)(2)【解析】(1)求出,令,由導(dǎo)數(shù)的正負即可得到函數(shù)f(x)的單調(diào)遞增區(qū)間和遞減區(qū)間;(2)求出函數(shù)在區(qū)間中的單調(diào)性,求出極大值和極小值以及區(qū)間端點的函數(shù)值,比較大小即可得到答案【小問1詳解】由函數(shù)得,令,解得x<?1或x>4,;令,解得?1<x<4,故函數(shù)f(x)的單調(diào)遞增區(qū)間為(?∞,?1)和(4,+∞),單調(diào)遞減區(qū)間為(?1,4);【小問2詳解】由(1)可知,當(dāng)x∈[?3,?1)時,,f(x)單調(diào)遞增,當(dāng)x∈(?1,4)時,,f(x)單調(diào)遞減,當(dāng)x∈(4,6]時,,f(x)單調(diào)遞增,所以當(dāng)x=?1時,函數(shù)f(x)取得極大值f(?1)=,當(dāng)x=4時,函數(shù)f(x)取得極小值f(4)=,又,所以當(dāng)x∈[?3,6]時,函數(shù)f(x)的值域為18、(1)證明見解析(2)【解析】(1)根據(jù)線面垂直的判定定理證出平面,即可證得;(2)以A為原點,分別以所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,根據(jù)二面角的向量公式即可求出【小問1詳解】如圖,連接,由已知可得四邊形是正方形,所以在直三棱柱中,平面平面,交線為,在中,可知,所以平面,于因為,所以平面,而平面,所以【小問2詳解】如圖所示,以A為原點,分別以所在直線為x軸,y軸,z軸建立空間直角坐標(biāo)系,則,于是設(shè)平面的法向量為,則,可取而平面的一個法向量為,所以故平面與平面所成銳二面角的余弦值為19、(1)(2)【解析】(1)因為圓心在直線上,可設(shè)圓心坐標(biāo)為,利用圓心到圓上兩點的距離相等列出等式求解即可.(2)直線與圓存在公共點,即圓心到直線的距離小于等于半徑,列出不等關(guān)系求解即可.【小問1詳解】解:因為圓心在直線上,所以設(shè)圓心坐標(biāo)為,因為圓經(jīng)過,,所以,即:,解方程得,圓心坐標(biāo)為,半徑為,圓的標(biāo)準(zhǔn)方程為:【小問2詳解】圓心到直線的距離且直線與圓有公共點即20、(1)(2)或【解析】(1)根據(jù)垂徑定理,可直接計算出圓的半徑;(2)根據(jù)直線的斜率是否存在分類討論,斜率不存在時,可得到直線方程為的直線滿足題意,斜率存在時,利用直線與圓相切,即到直線的距離等于半徑,然后解出關(guān)于斜率的方程即可.【小問1詳解】不妨設(shè)圓的半徑為,根據(jù)垂徑定理,可得:解得:則圓的方程為:【小問2詳解】當(dāng)直線的斜率不存在時,則有:故此時直線與圓相切,滿足題意當(dāng)直線的斜率存在時,不妨設(shè)直線的斜率為,點的直線的距離為直線的方程為:則有:解得:,此時直線的方程為:綜上可得,直線的方程為:或21、(1)是,;(2)【解析】(1)由題意設(shè)出所在直線方程,與拋物線方程聯(lián)立,化為關(guān)于的一元二次方程,由根與系數(shù)的關(guān)系即可求得為定值;(2)當(dāng)?shù)男甭蕿?時,求得三角形的面積為;當(dāng)?shù)男甭什粸?時,由弦長公式求解,再由點到直線的距離公式求到的距離,代入三角形面積公式,利用函數(shù)單調(diào)性可得三角形的面積大于,由此可得面積的最小值【詳解】(1)由題意知,直線斜率存在,不妨設(shè)其方程為,聯(lián)立拋物線的方程可得,設(shè),,則,,所以,,所以,所以是定值(2)當(dāng)直線的斜率為0時,,又,,此時當(dāng)直線的斜率不力0時,,又因為,且直線的斜率不為0,所以,即,所以點到直線的距離,此時,因為,所以,綜上,面積的最小值為22、(1)(2)【解析】(1)根據(jù)橢圓的定義和性質(zhì),建立方程求出,即可(2)設(shè)的方程為,,,,,設(shè)的方程為,,,,,分別聯(lián)立直線方程和橢圓方程,運用韋達定理和判別式大于0,以及弦長公式,求得,,運用菱形和橢圓的對稱性可得,關(guān)于原點對稱,結(jié)合菱形的對角線垂直和向量數(shù)量積為0,可得,設(shè)菱形的周長為,運用基本不等式,計算可得所求最大值【小問1詳解】點在線段的垂直平分線上,,又,曲線是以坐標(biāo)原點為中心,和為焦點,長軸長為的橢圓設(shè)曲線的方程為,,,曲線的方程為【小問2詳解】設(shè)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論