版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
河北省大名縣第一中學2025屆高二數學第一學期期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若實數滿足約束條件,則最小值為()A.-2 B.-1C.1 D.22.已知直線過點,且與直線垂直,則直線的方程為()A. B.C. D.3.過點且垂直于直線的直線方程是()A. B.C. D.4.數列滿足且,則的值是()A.1 B.4C.-3 D.65.在空間直角坐標系中,已知,,則MN的中點P到坐標原點О的距離為()A. B.C.2 D.36.過雙曲線Ω:(a>0,b>0)右焦點F作x軸的垂線,與Ω在第一象限的交點為M,且直線AM的斜率大于2,其中A為Ω的左頂點,則Ω的離心率的取值范圍為()A.(1,3) B.(3,+∞)C.(1,) D.(,+∞)7.已知點是雙曲線的左焦點,定點,是雙曲線右支上動點,則的最小值為().A.7 B.8C.9 D.108.已知圓:,點,則點到圓上點的最小距離為()A.1 B.2C. D.9.若,則n的值為()A.7 B.8C.9 D.1010.如右圖,一個直徑為1的小圓沿著直徑為2的大圓內壁的逆時針方向滾動,M和N是小圓的一條固定直徑的兩個端點.那么,當小圓這樣滾過大圓內壁的一周,點M,N在大圓內所繪出的圖形大致是A. B.C. D.11.橢圓的長軸長是()A.3 B.6C.9 D.412.已知點在平面內,是平面的一個法向量,則下列各點在平面內的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.等比數列的前n項和,則的通項公式為___________.14.如圖,已知橢圓E的方程為(a>b>0),A為橢圓的左頂點,B,C在橢圓上,若四邊形OABC為平行四邊形,且∠OAB=30°,則橢圓的離心率等于________15.已知圓被軸截得的弦長為4,被軸分成兩部分的弧長之比為1∶2,則圓心的軌跡方程為______,若點,,則周長的最小值為______16.若函數,則在點處切線的斜率為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)2020年10月,中共中央辦公廳、國務院辦公廳印發(fā)了《關于全面加強和改進新時代學校體育工作的意見》,某地積極開展中小學健康促進行動,發(fā)揮以體育智、以體育心功能,決定在2021年體育中考中再增加一定的分數,規(guī)定:考生須參加立定跳遠、擲實心球、一分鐘跳繩三項測試,其中一分鐘跳繩滿分20分,某校為掌握九年級學生一分鐘跳繩情況,隨機抽取了100名學生測試,其一分一分鐘跳繩個數成績(分)1617181920頻率(1)若每分鐘跳繩成績不足18分,則認為該學生跳繩成績不及格,求在進行測試的100名學生中跳繩成績不及格的人數為多少?(2)該學校決定由這次跳繩測試一分鐘跳繩個數在205以上(包括205)的學生組成“小小教練員"團隊,小明和小華是該團隊的成員,現學校要從該團隊中選派2名同學參加某跳繩比賽,求小明和小華至少有一人被選派的概率18.(12分)已知函數,曲線在點處的切線與直線垂直(其中為自然對數的底數)(1)求的解析式及單調遞減區(qū)間;(2)若函數無零點,求的取值范圍19.(12分)同時拋擲兩顆骰子,觀察向上點數.(1)試表示“出現兩個1點”這個事件相應的樣本空間的子集;(2)求出現兩個1點”的概率;(3)求“點數之和為7”的概率.20.(12分)已知直線,直線經過點且與直線平行,設直線分別與x軸,y軸交于A,B兩點.(1)求點A和B的坐標;(2)若圓C經過點A和B,且圓心C在直線上,求圓C的方程.21.(12分)已知各項為正數的等比數列中,,.(1)求數列通項公式;(2)設,求數列的前n項和.22.(10分)已知直線l過定點(1)若直線l與直線垂直,求直線l的方程;(2)若直線l在兩坐標軸上的截距相等,求直線l的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優(yōu)解,把最優(yōu)解的坐標代入目標函數得答案【詳解】由約束條件作出可行域如圖,聯立,解得,由,得,由圖可知,當直線過時,直線在軸上的截距最小,有最小值為故選:B2、A【解析】求出直線斜率,利用點斜式可得出直線的方程.【詳解】直線的斜率為,則直線的斜率為,故直線的方程為,即.故選:A.3、A【解析】根據所求直線垂直于直線,設其方程為,然后將點代入求解.【詳解】因為所求直線垂直于直線,所以設其方程為,又因為直線過點,所以,解得所以直線方程為:,故選:A.4、A【解析】根據題意,由于,可知數列是公差為-3的等差數列,則可知d=-3,由于=,故選A5、A【解析】利用中點坐標公式及空間中兩點之間的距離公式可得解.【詳解】,,由中點坐標公式,得,所以.故選:A6、B【解析】求點A和M的坐標,進而表示斜率,可得,整理得b2>2ac+2a2,從而可解得離心率的范圍.【詳解】F(c,0),設M(c,yM),(yM>0)代入可解得yM=,A(-a,0),由于kAM>2,即,整理得b2>2ac+2a2,又b2=c2-a2,∴c2-a2>2ac+2a2,即c2-2ac-3a2>0,∴e2-2e-3>0,e<-1(舍)或e>3.答案:B【點睛】解決橢圓和雙曲線的離心率的求值及范圍問題其關鍵就是確立一個關于的方程或不等式,再根據的關系消掉得到的關系式,而建立關于的方程或不等式,要充分利用橢圓和雙曲線的幾何性質、點的坐標的范圍等.7、C【解析】設雙曲線的右焦點為M,作出圖形,根據雙曲線的定義可得,可得出,利用A、P、M三點共線時取得最小值即可得解.【詳解】∵是雙曲線的左焦點,∴,,,,設雙曲線的右焦點為M,則,由雙曲線的定義可得,則,所以,當且僅當A、P、M三點共線時,等號成立,因此,的最小值為9.故選:C.【點睛】關鍵點點睛:利用雙曲線的定義求解線段和的最小值,有如下方法:(1)求解橢圓、雙曲線有關的線段長度和、差的最值,都可以通過相應的圓錐曲線的定義分析問題;(2)圓外一點到圓上的點的距離的最值,可通過連接圓外的點與圓心來分析求解.8、C【解析】寫出圓的圓心和半徑,求出距離的最小值,再結合圓外一點到圓上點的距離最小值的方法即可求解.【詳解】由圓:,得圓,半徑為,所以,所以點到圓上點的最小距離為.故選:C.9、D【解析】根據給定條件利用組合數的性質計算作答【詳解】因為,則由組合數性質有,即,所以n的值為10.故選:D10、A【解析】如圖:如圖,取小圓上一點,連接并延長交大圓于點,連接,,則在小圓中,,在大圓中,,根據大圓的半徑是小圓半徑的倍,可知的中點是小圓轉動一定角度后的圓心,且這個角度恰好是,綜上可知小圓在大圓內壁上滾動,圓心轉過角后的位置為點,小圓上的點,恰好滾動到大圓上的也就是此時的小圓與大圓的切點.而在小圓中,圓心角(是小圓與的交點)恰好等于,則,而點與點其實是同一個點在不同時刻的位置,則可知點與點是同一個點在不同時刻的位置.由于的任意性,可知點的軌跡是大圓水平的這條直徑.類似的可知點的軌跡是大圓豎直的這條直徑.故選A.11、B【解析】根據橢圓方程有,即可確定長軸長.【詳解】由橢圓方程知:,故長軸長為6.故選:B12、B【解析】設平面內的一點為,由可得,進而可得滿足的方程,將選項代入檢驗即可得正確選項.【詳解】設平面內的一點為(不與點重合),則,因為是平面的一個法向量,所以,所以,即,對于A:,故選項A不正確;對于B:,故選項B正確;對于C:,故選項C不正確;對于D:,故選項D不正確,故選:B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】利用的關系,結合是等比數列,即可求得結果.【詳解】因為,故當時,,則,又當時,,因為是等比數列,故也滿足,即,故,此時滿足,則.故答案為:.14、【解析】首先利用橢圓的對稱性和為平行四邊形,可以得出、兩點是關于軸對稱,進而得到;設,,,從而求出,然后由,利用,求得,最后根據得出離心率【詳解】解:是與軸重合的,且四邊形為平行四邊形,所以、兩點的縱坐標相等,、的橫坐標互為相反數,、兩點是關于軸對稱的由題知:四邊形為平行四邊形,所以可設,,代入橢圓方程解得:設為橢圓的右頂點,,四邊形為平行四邊形對點:解得:根據:得:故答案為:15、①.②.【解析】設,圓半徑為,進而根據題意得,,進而得其軌跡方程為雙曲線,再根據雙曲線的定義,將周長轉化為求的最小值,進而求解.【詳解】解:如圖1,因為圓被軸截得的弦長為4,被軸分成兩部分的弧長之比為1∶2,所以,,所以中點,則,,所以,故設,圓半徑為,則,,,所以,即所以圓心的軌跡方程為,表示雙曲線,焦點為,,如圖2,連接,由雙曲線的定義得,即,所以周長為,因為,所以周長的最小值為故答案為:;.16、【解析】根據條件求出,,再求即答案.【詳解】∵,∴,則和,得,,∴,,∴,所以在點處切線的斜率為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)14人;(2).【解析】(1)根據頻率直方表區(qū)間成績及其對應的頻率,即可求每分鐘跳繩成績不足18分的人數.(2)由表格數據求出一分鐘跳繩個數在205以上(包括205)的學生共6人,列舉出六人中選兩人參加比賽的所有情況、小明和小華至少有一個被選派的情況,由古典概型的概率求法即可得小明和小華至少有一人被選派的概率.【詳解】(1)由表可知,每分鐘跳繩成績不足18分,即為成績是16分或17分,在進行測試的100名學生中跳繩成績不及格人數為:人)(2)一分鐘跳繩個數在205以上(包括205)的學生頻率為,其人數為:(人),記小明為,小華為,其余四人為,則在這六人中選兩人參加比賽的所有情況為:,共15種,其中小明和小華至少有一個被選派的情況有:,共9種,小明和小華至少有一人被選派的概率為:.18、(1)單調減區(qū)間為和;(2)的取值范圍為:或【解析】(1)先求出函數的導數,求得切線的斜率,由兩直線垂直的條件,可得,求得的解析式,可得導數,令導數小于0,可得減區(qū)間;(2)先求得,要使函數無零點,即要在內無解,亦即要在內無解.構造函數,對其求導,然后對進行分類討論,運用單調性和函數零點存在性定理,即可得到的取值范圍.【詳解】(1),又由題意有:,故.此時,,由或,所以函數的單調減區(qū)間為和.(2),且定義域為,要函數無零點,即要在內無解,亦即要在內無解.構造函數.①當時,在內恒成立,所以函數在內單調遞減,在內也單調遞減.又,所以在內無零點,在內也無零點,故滿足條件;②當時,⑴若,則函數在內單調遞減,在內也單調遞減,在內單調遞增.又,所以在內無零點;易知,而,故在內有一個零點,所以不滿足條件;⑵若,則函數在內單調遞減,在內單調遞增.又,所以時,恒成立,故無零點,滿足條件;⑶若,則函數在內單調遞減,在內單調遞增,在內也單調遞增.又,所以在及內均無零點.又易知,而,又易證當時,,所以函數在內有一零點,故不滿足條件.綜上可得:的取值范圍為:或.【點睛】本題主要考查導數的幾何意義、應用導數研究函數的零點問題、其中分類討論思想.本題覆蓋面廣,對考生計算能力要求較高,是一道難題,解答本題,準確求導數是基礎,恰當分類討論是關鍵,易錯點是分類討論不全面、不徹底、不恰當,或因復雜式子變形能力差,而錯漏百出.本題能較好的考查考生的邏輯思維能力、基本計算能力、分類討論思想等19、(1)(2)(3)【解析】(1)由題意直接寫出基本事件即可得出答案.(2)樣本空間一共有個基本事件,由(1)可得答案.(3)列出“點數之和為7”的基本事件,從而可得答案.【小問1詳解】“同時拋擲兩顆骰子”的樣本空間是{1,2,…,6;1,2,…,6},其中i、j分別是拋擲第一顆與第二顆骰子所得的點數.將“出現兩個1點”這個事件用A表示,則事件A就是子集.【小問2詳解】樣本空間一共有個基本事件,它們是等可能的,從而“出現兩個1點”的概率為.小問3詳解】將“點數之和為7”這個事件用B表示,則{,,,,,},事件B共有6個基本事件,從而“點數之和為7”的概率為.20、(1),;(2).【解析】(1)由直線平行及所過的點,應用點斜式寫出直線方程,進而求A、B坐標.(2)由(1)求出垂直平分線方程,并聯立直線求圓心坐標,即可求圓的半徑,進而寫出圓C的方程.【小問1詳解】由題設,的斜率為,又直線與直線平行且過,所以直線為,即,令,則;令,則.所以,.【小問2詳解】由(1)可得:垂直平分線為,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 春天圖片課件教學課件
- 進入小學課件教學課件
- 八年級生物下冊教案全套 (新版)蘇教版
- 2024春季福建莆田市秀嶼區(qū)政府系統(tǒng)事業(yè)單位招聘管理單位遴選500模擬題附帶答案詳解
- 產品供貨協議書樣本模板
- 臨沂市家電行業(yè)勞動合同模板
- 二手車買賣推廣合同書
- 交通管理局交通協管員服務協議
- 臨時建筑租賃保證金協議
- 產品開發(fā)工程師助理勞動合同
- 2024年-重晶石購銷合同1本月修正
- 2022年廣州市白云區(qū)總工會社會化工會工作者考試試卷及答案解析
- 國家開放大學2024年《知識產權法》形考任務1-4答案
- 2024-2029年中國水上游樂園行業(yè)十四五發(fā)展分析及投資前景與戰(zhàn)略規(guī)劃研究報告
- 節(jié)能電梯知識培訓課件
- 小班美術《小刺猬背果果》課件
- 檔案移交方案
- 高中英語外研版(2019)選擇性必修第一冊各單元主題語境與單元目標
- 人教版數學三年級上冊《1-4單元綜合復習》試題
- 2024年水利工程行業(yè)技能考試-水利部質量檢測員筆試歷年真題薈萃含答案
- (新版)三級物聯網安裝調試員技能鑒定考試題庫大全-上(單選題匯總)
評論
0/150
提交評論