版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
德宏市重點中學2025屆高一上數(shù)學期末教學質量檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在《九章算術》中,將底面是直角三角形的直三棱柱稱為“塹堵”.如圖,網(wǎng)格紙上小正方形的邊長為,粗實線畫出的是某“塹堵”的三視圖,則該“塹堵”的側面積為()A.48 B.42C.36 D.302.下列敘述正確的是()A.三角形的內(nèi)角是第一象限角或第二象限角 B.鈍角是第二象限角C.第二象限角比第一象限角大 D.不相等的角終邊一定不同3.已知兩點,點在直線上,則的最小值為()A. B.9C. D.104.已知全集,集合,集合,則集合A. B.C. D.5.設p:關于x的方程有解;q:函數(shù)在區(qū)間上恒為正值,則p是q的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知圓錐的底面半徑為,當圓錐的體積為時,該圓錐的母線與底面所成角的正弦值為()A. B.C. D.7.地震以里氏震級來度量地震的強度,若設為地震時所散發(fā)出來的相對能量,則里氏震級可定義為.在2021年3月下旬,地區(qū)發(fā)生里氏級地震,地區(qū)發(fā)生里氏7.3級地震,則地區(qū)地震所散發(fā)出來的相對能量是地區(qū)地震所散發(fā)出來的相對能量的()倍.A.7 B.C. D.8.若表示空間中兩條不重合的直線,表示空間中兩個不重合的平面,則下列命題中正確的是()A.若,則 B.若,則C.若,則 D.若,則9.函數(shù)的單調遞減區(qū)間是()A. B.C. D.10.已知函數(shù)的圖像如圖所示,則函數(shù)與在同一坐標系中的圖像是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設函數(shù)則的值為________12.圓柱的側面展開圖是邊長分別為的矩形,則圓柱的體積為_____________13.若關于x的不等式對一切實數(shù)x恒成立,則實數(shù)k的取值范圍是___________.14.____.15.已知函數(shù)恰有2個零點,則實數(shù)m的取值范圍是___________.16.某班有學生45人,參加了數(shù)學小組的學生有31人,參加了英語小組的學生有26人.已知該班每個學生都至少參加了這兩個小組中的一個小組,則該班學生中既參加了數(shù)學小組,又參加了英語小組的學生有___________人.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.牛奶保鮮時間因儲藏溫度的不同而不同,假定保鮮時間與儲藏溫度之間的函數(shù)關系是(且),若牛奶放在0℃的冰箱中,保鮮時間是200小時,而在1℃的溫度下則是160小時,而在2℃的溫度下則是128小時.(1)寫出保鮮時間關于儲藏溫度(℃)的函數(shù)解析式;(2)利用(1)的結論,若設置儲藏溫度為3℃的情況下,某人儲藏一瓶牛奶的時間為90至100小時之間,則這瓶牛奶能否正常飲用?(說明理由)18.已知函數(shù),其定義域為D(1)求D;(2)設,若關于的方程在內(nèi)有唯一零點,求的取值范圍19.在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點D是AB的中點,(Ⅰ)求證:A1C1⊥BC1;(Ⅱ)求證:AC1∥平面CDB120.某籃球隊在本賽季已結束的8場比賽中,隊員甲得分統(tǒng)計的莖葉圖如下:(1)求甲在比賽中得分均值和方差;(2)從甲比賽得分在分以下場比賽中隨機抽取場進行失誤分析,求抽到場都不超過均值的概率21.已知與都是銳角,且,(1)求的值;(2)求證:
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】由三視圖可知該“塹堵”的高為,其底面是直角邊為,斜邊為的三角形,從而可求出其側面積.【詳解】解:由三視圖易得該“塹堵”的高為,其底面是直角邊為,斜邊為的三角形,故其側面積為.故選:C.2、B【解析】利用象限角、鈍角、終邊相同角的概念逐一判斷即可.【詳解】∵直角不屬于任何一個象限,故A不正確;鈍角屬于是第二象限角,故B正確;由于120°是第二象限角,390°是第一象限角,故C不正確;由于20°與360°+20°不相等,但終邊相同,故D不正確.故選B【點睛】本題考查象限角、象限界角、終邊相同的角的概念,綜合應用舉反例、排除等手段,選出正確的答案3、C【解析】根據(jù)給定條件求出B關于直線的對稱點坐標,再利用兩點間距離公式計算作答.【詳解】依題意,若關于直線的對稱點,∴,解得,∴,連接交直線于點,連接,如圖,在直線上任取點C,連接,顯然,直線垂直平分線段,則有,當且僅當點與重合時取等號,∴,故的最小值為.故選:C4、A【解析】,所以,故選A.考點:集合運算.5、B【解析】先化簡p,q,再利用充分條件和必要條件的定義判斷.【詳解】因為方程有解,即方程有解,令,則,即;因為函數(shù)在區(qū)間上恒為正值,所以在區(qū)間上恒成立,即在區(qū)間上恒成立,解得,所以p是q的必要不充分條件,故選:B6、A【解析】首先理解圓錐體中母線與底面所成角的正弦值為它的高與母線的比值,結合圓錐的體積公式及已知條件即可求出正弦值.【詳解】如圖,根據(jù)圓錐的性質得底面圓,所以即為母線與底面所成角,設圓錐的高為,則由題意,有,所以,所以母線的長為,則圓錐的母線與底面所成角的正弦值為.故選:A【點睛】本題考查了圓錐的體積,線面角的概念,考查運算求解能力,是基礎題.本題解題的關鍵在于根據(jù)圓錐的性質得即為母線與底面所成角,再根據(jù)幾何關系求解.7、C【解析】把兩個震級代入后,兩式作差即可解決此題【詳解】設里氏3.1級地震所散發(fā)出來的能量為,里氏7.3級地震所散發(fā)出來的能量為,則①,②②①得:,解得:故選:8、C【解析】利用空間位置關系的判斷及性質定理進行判斷或舉反例判斷【詳解】對于A,若n?平面α,顯然結論錯誤,故A錯誤;對于B,若m?α,n?β,α∥β,則m∥n或m,n異面,故B錯誤;對于C,若m⊥n,m⊥α,n⊥β,則α⊥β,根據(jù)面面垂直的判定定理進行判定,故C正確;對于D,若α⊥β,m?α,n?β,則m,n位置關系不能確定,故D錯誤故選C【點睛】本題考查了空間線面位置關系的性質與判斷,屬于中檔題9、D【解析】解不等式,即可得出函數(shù)的單調遞減區(qū)間.【詳解】解不等式,得,因此,函數(shù)的單調遞減區(qū)間為.故選:D.【點睛】本題考查余弦型函數(shù)單調區(qū)間的求解,考查計算能力,屬于基礎題.10、B【解析】由函數(shù)的圖象可得,函數(shù)的圖象過點,分別代入函數(shù)式,,解得,函數(shù)與都是增函數(shù),只有選項符合題意,故選B.【方法點晴】本題通過對多個圖象的選擇考查函數(shù)的圖象與性質,屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據(jù)函數(shù)的定義域、值域、單調性、奇偶性、特殊點以及時函數(shù)圖象的變化趨勢,利用排除法,將不合題意的選項一一排除.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】直接利用分段函數(shù)解析式,先求出的值,從而可得的值.【詳解】因為函數(shù),所以,則,故答案為.【點睛】本題主要考查分段函數(shù)的解析式、分段函數(shù)解不等式,屬于中檔題.對于分段函數(shù)解析式的考查是命題的動向之一,這類問題的特點是綜合性強,對抽象思維能力要求高,因此解決這類題一定要層次清楚,思路清晰.12、或【解析】有兩種形式的圓柱的展開圖,分別求出底面半徑和高,分別求出體積.【詳解】圓柱的側面展開圖是邊長為2a與a的矩形,當母線為a時,圓柱的底面半徑是,此時圓柱體積是;當母線為2a時,圓柱的底面半徑是,此時圓柱的體積是,綜上所求圓柱的體積是:或,故答案為或;本題考查圓柱的側面展開圖,圓柱的體積,容易疏忽一種情況,導致錯誤.13、【解析】根據(jù)一元二次不等式與二次函數(shù)的關系,可知只需判別式,利用所得不等式求得結果.【詳解】不等式對一切實數(shù)x恒成立,,解得:故答案為:.14、.【解析】本題直接運算即可得到答案.【詳解】解:,故答案為:.【點睛】本題考查指數(shù)冪的運算、對數(shù)的運算,是基礎題.15、【解析】討論上的零點情況,結合題設確定上的零點個數(shù),根據(jù)二次函數(shù)性質求m的范圍.【詳解】當時,恒有,此時無零點,則,∴要使上有2個零點,只需即可,故有2個零點有;當時,存在,此時有1個零點,則,∴要使上有1個零點,只需即可,故有2個零點有;綜上,要使有2個零點,m的取值范圍是.故答案為:.16、12【解析】設該班學生中既參加了數(shù)學小組,又參加了英語小組的學生有人,列方程求解即可.【詳解】設該班學生中既參加了數(shù)學小組,又參加了英語小組的學生有人,則.故答案為:12.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)可以正常飲用【解析】(1)利用題中條件,列出等式,求解即可;(2)利用(1)中結論,當時,即可計算出保鮮時間,判斷即可【小問1詳解】由題意可知解得【小問2詳解】由(1)知溫度為3℃時保鮮的時間為:小時故可以正常飲用18、(1)(2)【解析】(1)由可求出結果;(2)由求出或,根據(jù)方程在內(nèi)有唯一零點,得到,解得結果即可.【小問1詳解】由得,得,得,所以函數(shù)的定義域為,即.【小問2詳解】因為,所以,所以或,因為關于的方程在內(nèi)有唯一零點,且,所以,解得.19、(1)見解析(2)見解析【解析】(1)要證線線垂直,轉證平面,(2)要證AC1∥平面CDB1,轉證//即可.試題解析:證明(法一:故有,A.法二:;由直三棱柱;;平面;平面,平面,平面,(連接相交于點O,連OD,易知//,平面,平面,故//平面.點睛:垂直、平行關系證明中應用轉化與化歸思想的常見類型.(1)證明線面、面面平行,需轉化為證明線線平行.(2)證明線面垂直,需轉化為證明線線垂直.(3)證明線線垂直,需轉化為證明線面垂直.20、(1)15,32.25(2)【解析】(1)由已知中的莖葉圖,代入平均數(shù)和方差公式,可得得答案;(2)根據(jù)古典概型計算即可求解.【詳解】(1)這8場比賽隊員甲得分為:7,8,10,15,17,19,21,23故平均數(shù)為:,方差:.(2)從甲
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度自然人與音樂制作人創(chuàng)作合同3篇
- 二零二五年度出境領隊培訓基地建設合同4篇
- 2025物業(yè)保潔與緊急維修值班服務一體化項目合同9篇
- 2025年度智能停車設施門面房產(chǎn)權轉讓合同4篇
- 2025年度個人與公司租賃合同糾紛處理條款4篇
- 二零二五年度啤酒品牌市場推廣代理合同3篇
- 二零二五年度城市核心區(qū)存量房買賣居間服務合同4篇
- 二零二五版智能門窗遠程監(jiān)控服務合同范本4篇
- 二零二五年度旅行社旅游紀念品承包合同3篇
- 2025年度農(nóng)家樂旅游產(chǎn)品定制開發(fā)與銷售合同3篇
- 設備管理績效考核細則
- 中國人民銀行清算總中心直屬企業(yè)2023年招聘筆試上岸歷年典型考題與考點剖析附帶答案詳解
- (正式版)SJT 11449-2024 集中空調電子計費信息系統(tǒng)工程技術規(guī)范
- 廣州綠色金融發(fā)展現(xiàn)狀及對策的研究
- 人教版四年級上冊加減乘除四則混合運算300題及答案
- 合成生物學技術在生物制藥中的應用
- 消化系統(tǒng)疾病的負性情緒與心理護理
- 高考語文文學類閱讀分類訓練:戲劇類(含答案)
- 協(xié)會監(jiān)事會工作報告大全(12篇)
- WS-T 813-2023 手術部位標識標準
- 同意更改小孩名字協(xié)議書
評論
0/150
提交評論