版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河北省石家莊市河正定中學(xué)2025屆高二上數(shù)學(xué)期末學(xué)業(yè)水平測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一道數(shù)學(xué)試題,甲、乙兩位同學(xué)獨立完成,設(shè)命題是“甲同學(xué)解出試題”,命題是“乙同學(xué)解出試題”,則命題“至少一位同學(xué)解出試題”可表示為()A. B.C. D.2.設(shè),直線,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.已知向量,,且,則的值為()A. B.C.或 D.或4.已知、是橢圓的兩個焦點,P為橢圓C上一點,且,若的面積為9,則的值為()A.1 B.2C.3 D.45.過坐標(biāo)原點作直線的垂線,垂足為,則的取值范圍是()A. B.C. D.6.已知等差數(shù)列的前項和為,若,,則()A. B.C. D.7.甲,乙、丙、丁、戊共5人隨機(jī)地排成一行,則甲、乙相鄰,丙、丁不相鄰的概率為()A. B.C. D.8.已知函數(shù),在上隨機(jī)任取一個數(shù),則的概率為()A. B.C. D.9.,,,,設(shè),則下列判斷中正確的是()A. B.C. D.10.已知雙曲線C:-=1(a>b>0)的左焦點為F1,若過原點傾斜角為的直線與雙曲線C左右兩支交于M、N兩點,且MF1NF1,則雙曲線C的離心率是()A.2 B.C. D.11.已知直線和互相平行,則實數(shù)()A. B.C.或 D.或12.已知向量,且與互相垂直,則k=()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,為雙曲線的左、右焦點,過作的垂線分別交雙曲線的左、右兩支于B,C兩點(如圖).若,則雙曲線的漸近線方程為______14.已知等差數(shù)列的公差,等比數(shù)列的公比q為正整數(shù),若,,且是正整數(shù),則______15.若隨機(jī)變量,則______.16.已知函數(shù)是上的奇函數(shù),,對,成立,則的解集為_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)為常數(shù),函數(shù).(1)討論函數(shù)的單調(diào)性;(2)若函數(shù)的圖象與直線相切,求實數(shù)的值;(3)當(dāng)時,在上有兩個極值點且恒成立,求實數(shù)的取值范圍.18.(12分)如下圖,已知點是離心率為的橢圓:上的一點,斜率為的直線交橢圓于、兩點,且、、三點互不重合(1)求橢圓的方程;(2)求證:直線,的斜率之和為定值19.(12分)已知.(1)討論的單調(diào)性;(2)當(dāng)有最大值,且最大值大于時,求取值范圍.20.(12分)設(shè)數(shù)列的前項和為,且.(1)求數(shù)列的通項公式;(2)記,求數(shù)列的前項和為.21.(12分)設(shè)P是拋物線上一個動點,F(xiàn)為拋物線的焦點.(1)若點P到直線距離為,求的最小值;(2)若,求的最小值.22.(10分)已知數(shù)列{}滿足a1=1,a3+a7=18,且(n≥2)(1)求數(shù)列{}的通項公式;(2)若=·,求數(shù)列的前n項和
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據(jù)“或命題”的定義即可求得答案.【詳解】“至少一位同學(xué)解出試題”的意思是“甲同學(xué)解出試題,或乙同學(xué)解出試題”.故選:D.2、A【解析】由可求得實數(shù)的值,再利用充分條件、必要條件的定義判斷可得出結(jié)論.【詳解】若,則,解得或,因此,“”是“”的充分不必要條件.故選:A.3、C【解析】根據(jù)空間向量平行的性質(zhì)得,代入數(shù)值解方程組即可.【詳解】因為,所以,所以,所以,解得或.故選:C.4、C【解析】根據(jù)橢圓定義,和條件列式,再通過變形計算求解.【詳解】由條件可知,,即,解得:.故選:C【點睛】本題考查橢圓的定義,焦點三角形的性質(zhì),重點考查轉(zhuǎn)化與變形,計算能力,屬于基礎(chǔ)題型.5、D【解析】求出直線直線過的定點A,由題意可知垂足是落在以O(shè)A為直徑的圓上,由此可利用的幾何意義求得答案,【詳解】直線,即,令,解得,即直線過定點,由過坐標(biāo)原點作直線的垂線,垂足為,可知:落在以O(shè)A為直徑的圓上,而以O(shè)A為直徑的圓為,如圖示:故可看作是圓上的點到原點距離的平方,而圓過原點,圓上點到原點的最遠(yuǎn)距離為,但將原點坐標(biāo)代入直線中,不成立,即直線l不過原點,所以不可能和原點重合,故,故選:D6、B【解析】根據(jù)和可求得,結(jié)合等差數(shù)列通項公式可求得.【詳解】設(shè)等差數(shù)列公差為,由得:;又,,.故選:B.7、A【解析】先求出所有的基本事件,再求出甲、乙相鄰,丙、丁不相鄰的基本事件,根據(jù)古典概型的概率公式求解即可【詳解】甲,乙、丙、丁、戊共5人隨機(jī)地排成一行有種方法,甲、乙相鄰,丙、丁不相鄰的排法為先將甲、乙捆綁在一起,再與戊進(jìn)行排列,然后丙、丁從3個空中選2個空插入,則共有種方法,所以甲、乙相鄰,丙、丁不相鄰的概率為,故選:A8、A【解析】先解不等式,然后由區(qū)間長度比可得.【詳解】解不等式,得,所以,即的概率為.故選:A9、D【解析】通過湊配構(gòu)造的方式,構(gòu)造出新式子,且可以化簡為整數(shù),然后利用放縮思想得到S的范圍.【詳解】解:,,,,,;,.故選:D10、C【解析】根據(jù)雙曲線和直線的對稱性,結(jié)合矩形的性質(zhì)、雙曲線的定義、離心率公式、余弦定理進(jìn)行求解即可.【詳解】設(shè)雙曲線的右焦點為F2,過原點傾斜角為的直線為,設(shè)M、N分別在第三、第一象限,由雙曲線和直線的對稱性可知:M、N兩點關(guān)于原點對稱,而MF1NF1,因此四邊形是矩形,而,所以是等邊三角形,故,因此,因為,所以,在等腰三角形中,由余弦定理可知:,由矩形的性質(zhì)可知:,由雙曲線的定義可知:,故選:C【點睛】關(guān)鍵點睛:利用矩形的性質(zhì)、雙曲線的定義是解題的關(guān)鍵.11、C【解析】根據(jù)題意,結(jié)合兩直線的平行,得到且,即可求解.【詳解】由題意,直線和互相平行,可得且,即且,解得或.故選:C.12、C【解析】利用垂直的坐標(biāo)表示列方程求解即可.【詳解】由與互相垂直得,解得故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)雙曲線的定義先計算出,,注意到圖中漸近線,于是利用兩種不同的表示法列方程求解.【詳解】,則,由雙曲線的定義及在右支上,,又在左支上,則,則,在中,由余弦定理,,而圖中漸近線,于是,得,于是,不妨令,化簡得,解得,漸近線就為:.故答案為:.14、【解析】由已知等差、等比數(shù)列以及,,是正整數(shù),可得,結(jié)合q為正整數(shù),進(jìn)而求.【詳解】由,,令,其中m為正整數(shù),有,又為正整數(shù),所以當(dāng)時,解得,當(dāng)時,解得不是正整數(shù),故答案為:15、2【解析】根據(jù)給定條件利用二項分布的期望公式直接計算作答.【詳解】因為隨機(jī)變量,所以.故答案:216、【解析】根據(jù)題意可以設(shè),求其導(dǎo)數(shù)可知在上的單調(diào)性,由是上的奇函數(shù),可知的奇偶性,進(jìn)而可知在上的單調(diào)性,由可知的零點,最后分類討論即可.【詳解】設(shè),則對,,則在上為單調(diào)遞增函數(shù),∵函數(shù)是上的奇函數(shù),∴,∴,∴偶函數(shù),∴在上為單調(diào)遞減函數(shù),又∵,∴,由已知得,所以當(dāng)時,;當(dāng)時,;當(dāng)時,;當(dāng)時,;若,則;若,則或,解得或或;則的解集為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)答案見解析;(2)7;(3)【解析】(1)根據(jù)題意求得,討論,,,時解,即可得出函數(shù)的單調(diào)區(qū)間;(2)設(shè)切點為則結(jié)合,得令通過求導(dǎo)研究單調(diào)性解得進(jìn)而解出的值.(3)由已知可得解析式,觀察有,求導(dǎo)得原題意可轉(zhuǎn)化為函數(shù)在上有兩個不同零點.結(jié)合根分布可得,函數(shù)的兩個極值點為是在上的兩個不同零點可得且,代入函數(shù)中令通過單調(diào)性求出進(jìn)而可得答案.【詳解】解:(1),令,解得:①當(dāng)時,由得,由得,在上單調(diào)遞減,在上單調(diào)遞增;②當(dāng)時,由得或由得所以在上單調(diào)遞減,在上單調(diào)遞增;③當(dāng)時,恒成立,所以上單調(diào)遞增.④當(dāng)時,由得或由得所以在上單調(diào)遞減,在上單調(diào)遞增.綜上:①當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;②當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增;③當(dāng)時,在上單調(diào)遞增.④當(dāng)時,在上單調(diào)遞減,在上單調(diào)遞增.(2)設(shè)切點為則(*),由可得(**),聯(lián)立(*)(**)可得,設(shè)則,所以在單調(diào)遞增,在單調(diào)遞減,又,所以,所以.(3)由已知可得令由題意知在上有兩個不同零點.則,因為函數(shù)的兩個極值點為,則和是在上的兩個不同零點.所以且,所以令則所以在上單調(diào)遞增,所以有其中,即又恒成立,所以故實數(shù)的取值范圍為.【點睛】方法點睛:已知不等式恒成立求參數(shù)值(取值范圍)問題常用的方法:(1)函數(shù)法:討論參數(shù)范圍,借助函數(shù)單調(diào)性求解;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域或最值問題加以解決;(3)數(shù)形結(jié)合法:先對解析式變形,進(jìn)而構(gòu)造兩個函數(shù),然后在同一平面直角坐標(biāo)系中畫出函數(shù)的圖象,利用數(shù)形結(jié)合的方法求解.18、(1);(2)證明見解析.【解析】(1)根據(jù)離心率為可得,把代入方程可得,又,解方程組即可求得方程;(2)設(shè)直線的方程為,整理方程組,求得,及參數(shù)的范圍,由斜率公式表示出,結(jié)合直線方程和韋達(dá)定理整理即可得到定值.試題解析:(1)由題意,可得,代入得,又,解得,,所以橢圓的方程為.(2)證明:設(shè)直線的方程為,又,,三點不重合,∴,設(shè),,由得,所以,解得,,①,②設(shè)直線,的斜率分別為,,則(),分別將①②式代入(),得,所以,即直線,的斜率之和為定值考點:橢圓的標(biāo)準(zhǔn)方程及直線與橢圓的位置關(guān)系.【方法點睛】本題主要考查了橢圓的標(biāo)準(zhǔn)方程及直線與橢圓的位置關(guān)系,考查了方程的思想和考試與運(yùn)算能力,屬于中檔題.求橢圓方程通常用待定系數(shù)法,注意隱含條件;研究圓錐曲線中的定值問題,通常根據(jù)交點與方程組解得對應(yīng)性,設(shè)而不解,表示出待求定值的表達(dá)式,利用韋達(dá)定理代入整理,消去參數(shù)即可得到定值.19、(1)時,在是單調(diào)遞增;時,在單調(diào)遞增,在單調(diào)遞減.(2).【解析】(Ⅰ)由,可分,兩種情況來討論;(II)由(I)知當(dāng)時在無最大值,當(dāng)時最大值為因此.令,則在是增函數(shù),當(dāng)時,,當(dāng)時,因此a的取值范圍是.試題解析:(Ⅰ)的定義域為,,若,則,在是單調(diào)遞增;若,則當(dāng)時,當(dāng)時,所以在單調(diào)遞增,在單調(diào)遞減.(Ⅱ)由(Ⅰ)知當(dāng)時在無最大值,當(dāng)時在取得最大值,最大值為因此.令,則在是增函數(shù),,于是,當(dāng)時,,當(dāng)時,因此a取值范圍是.考點:本題主要考查導(dǎo)數(shù)在研究函數(shù)性質(zhì)方面的應(yīng)用及分類討論思想.20、(1);(2).【解析】(1)利用可求得結(jié)果;(2)由(1)可得,利用裂項相消法可求得結(jié)果.【小問1詳解】當(dāng)時,;當(dāng)時,,;經(jīng)檢驗:滿足;綜上所述:.【小問2詳解】由(1)得:,.21、(1);(2)4.【解析】(1)利用拋物線的定義可知,將問題問題轉(zhuǎn)化為求的最小值,即求.(2)判斷點B在拋物線的內(nèi)部,過B作垂直準(zhǔn)線于點Q,交拋物線于點,利用拋物線的定義求解即可.【詳解】解析(1)依題意,拋物線的焦點為,準(zhǔn)線方程為.由已知及拋物線的定義,可知,于是問題轉(zhuǎn)化為求的最小值.由平面幾何知識知,當(dāng)F,P,A三點共線時,取得最小值,最小值為,即的最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- YC/T 622-2024烤煙代表性樣品抽樣方法
- 2025年度環(huán)境管理體系認(rèn)證與安全服務(wù)協(xié)議3篇
- 2024年資料員權(quán)益保障協(xié)議3篇
- 親子樂園租賃合同模板
- 造船企業(yè)備用金內(nèi)部控制
- 建筑防水審查合同
- 養(yǎng)老院人工打水井施工合同
- 食品添加劑安全使用條例
- 酒店服務(wù)分包協(xié)議
- 航空航天董事長聘用合同模板
- Unit 4 I used to be afraid of the dark教學(xué)設(shè)計2024-2025學(xué)年英語人教版九年級
- HIV陽性孕產(chǎn)婦全程管理專家共識2024年版解讀
- 2024-2030年中國散熱產(chǎn)業(yè)運(yùn)營效益及投資前景預(yù)測報告
- 和父親斷絕聯(lián)系協(xié)議書范本
- 2024時事政治考試題庫(100題)
- 2024地理知識競賽試題
- DL∕T 5776-2018 水平定向鉆敷設(shè)電力管線技術(shù)規(guī)定
- 廣東省中山市2023-2024學(xué)年高一下學(xué)期期末統(tǒng)考英語試題
- 古典時期鋼琴演奏傳統(tǒng)智慧樹知到期末考試答案章節(jié)答案2024年星海音樂學(xué)院
- 樂山市市中區(qū)2022-2023學(xué)年七年級上學(xué)期期末地理試題【帶答案】
- 兩人合伙人合作協(xié)議合同
評論
0/150
提交評論