人教版七年級數(shù)學下學期實數(shù)檢測試題含解析_第1頁
人教版七年級數(shù)學下學期實數(shù)檢測試題含解析_第2頁
人教版七年級數(shù)學下學期實數(shù)檢測試題含解析_第3頁
人教版七年級數(shù)學下學期實數(shù)檢測試題含解析_第4頁
人教版七年級數(shù)學下學期實數(shù)檢測試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

一、選擇題1.下列命題是真命題的有()個①兩個無理數(shù)的和可能是無理數(shù);②兩條直線被第三條直線所截,同位角相等;③同一平面內,垂直于同一條直線的兩條直線互相平行;④過一點有且只有一條直線與已知直線平行;⑤無理數(shù)都是無限小數(shù).A.2 B.3 C.4 D.52.若實數(shù)p,q,m,n在數(shù)軸上的對應點的位置如圖所示,且滿足,則絕對值最小的數(shù)是()A.p B.q C.m D.n3.已知,為兩個連續(xù)的整數(shù),且,則的值等于()A. B. C. D.4.若,,則所有可能的值為()A.8 B.8或2 C.8或 D.或5.估算的值應在()A.5和6之間 B.6和7之間 C.7和8之間 D.8和9之間6.將尺寸如圖的4塊完全相同的長方形薄木塊(厚度忽略不計)進行拼擺,恰好可以不重疊地擺放在如圖的甲、乙兩個方框內.已知小木塊的寬為2,圖甲中陰影部分面積為19,則圖乙中AD的長為()A. B. C. D.7.下列說法中,錯誤的有()①符號相反的數(shù)與為相反數(shù);②當時,;③如果,那么;④數(shù)軸上表示兩個有理數(shù)的點,較大的數(shù)表示的點離原點較遠;⑤數(shù)軸上的點不都表示有理數(shù).A.0個 B.1個 C.2個 D.3個8.任何一個正整數(shù)n都可以進行這樣的分解:n=p×q(p,q都是正整數(shù),且p≤q),如果p×q在n的所有分解中兩個因數(shù)之差的絕對值最小,我們就稱p×q是n的黃金分解,并規(guī)定:F(n)=,例如:18可以分解為1×18;2×9;3×6這三種,這時F(18)=,現(xiàn)給出下列關于F(n)的說法:①F(2)=;②F(24)=;③F(27)=3;④若n是一個完全平方數(shù),則F(n)=1,其中說法正確的個數(shù)有()A.1個 B.2個 C.3個 D.4個9.按如圖所示的運算程序,能使輸出y值為1的是()A. B. C. D.10.如圖,數(shù)軸上O、A、B、C四點,若數(shù)軸上有一點M,點M所表示的數(shù)為,且,則關于M點的位置,下列敘述正確的是()A.在A點左側 B.在線段AC上 C.在線段OC上 D.在線段OB上二、填空題11.規(guī)定:[x]表示不大于x的最大整數(shù),(x)表示不小于x的最小整數(shù),[x)表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2.當﹣1<x<1時,化簡[x]+(x)+[x)的結果是_____.12.現(xiàn)定義一種新運算:對任意有理數(shù)a、b,都有a?b=a2﹣b,例如3?2=32﹣2=7,2?(﹣1)=_____.13.已知an=(n=1,2,3,…),記b1=2(1-a1),b2=2(1-a1)(1-a2),…,bn=2(1-a1)(1-a2)…(1-an),則通過計算推測出表達式bn=________(用含n的代數(shù)式表示).14.在研究“數(shù)字黑洞”這節(jié)課中,樂樂任意寫下了一個四位數(shù)(四數(shù)字完全相同的除外),重新排列各位數(shù)字,使其組成一個最大的數(shù)和一個最小的數(shù),然后用最大的數(shù)減去最小的數(shù),得到差:重復這個過程,……,樂樂發(fā)現(xiàn)最后將變成一個固定的數(shù),則這個固定的數(shù)是__________.15.觀察等式:,,,,……猜想______.16.如圖,將面積為3的正方形放在數(shù)軸上,以表示實數(shù)1的點為圓心,正方形的邊長為半徑,作圓交數(shù)軸于點、,則點表示的數(shù)為______.17.在求1+3+32+33+34+35+36+37+38的值時,張紅發(fā)現(xiàn):從第二個加數(shù)起每一個加數(shù)都是前一個加數(shù)的3倍,于是她假設:S=1+3+32+33+34+35+36+37+38①,然后在①式的兩邊都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,②-①得,3S-S=39-1,即2S=39-1,所以S=.得出答案后,愛動腦筋的張紅想:如果把“3”換成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正確答案是______.18.將1,,,按如圖方式排列.若規(guī)定,表示第排從左向右第個數(shù),則所表示的數(shù)是___________.19.若+(y+1)2=0,則(x+y)3=_____.20.對兩數(shù)a,b規(guī)定一種新運算:,例如:,若不論取何值時,總有,則=______.三、解答題21.閱讀材料,回答問題:(1)對于任意實數(shù)x,符號表示“不超過x的最大整數(shù)”,在數(shù)軸上,當x是整數(shù),就是x,當x不是整數(shù)時,是點x左側的第一個整數(shù)點,如,,,,則________,________.(2)2015年11月24日,杭州地鐵1號線下沙延伸段開通運營,極大的方便了下沙江濱居住區(qū)居民的出行,杭州地鐵收費采用里程分段計價,起步價為2元/人次,最高價為8元/人次,不足1元按1元計算,具體權費標準如下:里程范圍4公里以內(含4公里)4-12公里以內(含12公里)12-24公里以內(含24公里)24公里以上收費標準2元4公里/元6公里/元8公里/元①若從下沙江濱站到文海南路站的里程是3.07公里,車費________元,下沙江濱站到金沙湖站里程是7.93公里,車費________元,下沙江濱站到杭州火東站里程是19.17公里,車費________元;②若某人乘地鐵花了7元,則他乘地鐵行駛的路程范圍(不考慮實際站點下車里程情況)?22.數(shù)學家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:39.眾人感覺十分驚奇,請華羅庚給大家解讀其中的奧秘.你知道怎樣迅速準確的計算出結果嗎?請你按下面的問題試一試:①,又,,∴能確定59319的立方根是個兩位數(shù).②∵59319的個位數(shù)是9,又,∴能確定59319的立方根的個位數(shù)是9.③如果劃去59319后面的三位319得到數(shù)59,而,則,可得,由此能確定59319的立方根的十位數(shù)是3因此59319的立方根是39.(1)現(xiàn)在換一個數(shù)195112,按這種方法求立方根,請完成下列填空.①它的立方根是_______位數(shù).②它的立方根的個位數(shù)是_______.③它的立方根的十位數(shù)是__________.④195112的立方根是________.(2)請直接填寫結果:①________.②________.23.定義:如果,那么稱b為n的布谷數(shù),記為.例如:因為,所以,因為,所以.(1)根據(jù)布谷數(shù)的定義填空:g(2)=________________,g(32)=___________________.(2)布谷數(shù)有如下運算性質:若m,n為正整數(shù),則,.根據(jù)運算性質解答下列各題:①已知,求和的值;②已知.求和的值.24.(概念學習)規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)記作(﹣3)④,讀作“﹣3的圈4次方”,一般地,把n個a(a≠0)記作a?,讀作“a的圈n次方”.(初步探究)(1)直接寫出計算結果:2③=,(﹣)⑤=;(深入思考)我們知道,有理數(shù)的減法運算可以轉化為加法運算,除法運算可以轉化為乘法運算,有理數(shù)的除方運算如何轉化為乘方運算呢?(1)試一試:仿照上面的算式,將下列運算結果直接寫成乘方的形式.(﹣3)④=;5⑥=;(﹣)⑩=.(2)想一想:將一個非零有理數(shù)a的圈n次方寫成乘方的形式等于;25.規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2,(-3)÷(-3)÷(-3)÷(-3)等.類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,(-3)÷(-3)÷(-3)÷(-3)記作(-3)④,讀作“-3的圈4次方”,一般地,把(a≠0)記作a?,讀作“a的圈

n次方”.(初步探究)(1)直接寫出計算結果:2③=___,()⑤=___;(2)關于除方,下列說法錯誤的是___A.任何非零數(shù)的圈2次方都等于1;

B.對于任何正整數(shù)n,1?=1;C.3④=4③;

D.負數(shù)的圈奇數(shù)次方結果是負數(shù),負數(shù)的圈偶數(shù)次方結果是正數(shù).(深入思考)我們知道,有理數(shù)的減法運算可以轉化為加法運算,除法運算可以轉化為乘法運算,有理數(shù)的除方運算如何轉化為乘方運算呢?(1)試一試:仿照上面的算式,將下列運算結果直接寫成冪的形式.(-3)④=___;

5⑥=___;(-)⑩=___.(2)想一想:將一個非零有理數(shù)a的圈n次方寫成冪的形式等于___;(3)算一算:÷(?)④×(?2)⑤?(?)⑥÷26.我們知道,任意一個正整數(shù)都可以進行這樣的分解:(,是正整數(shù),且),在的所有這種分解中,如果,兩因數(shù)之差的絕對值最小,我們就稱是的最佳分解,并規(guī)定:.例如:可分解成,或,因為,所以是的最佳分解,所以(1)填空:;;(2)一個兩位正整數(shù)(,,,為正整數(shù)),交換其個位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原數(shù)所得的差為,求出所有的兩位正整數(shù);并求的最大值;(3)填空:①;②;27.三個自然數(shù)x、y、z組成一個有序數(shù)組,如果滿足,那么我們稱數(shù)組為“蹦蹦數(shù)組”.例如:數(shù)組中,故是“蹦蹦數(shù)組”;數(shù)組中,故不是“蹦蹦數(shù)組”.(1)分別判斷數(shù)組和是否為“蹦蹦數(shù)組”;(2)s和t均是三位數(shù)的自然數(shù),其中s的十位數(shù)字是3,個位數(shù)字是2,t的百位數(shù)字是2,十位數(shù)字是5,且.是否存在一個整數(shù)b,使得數(shù)組為“蹦蹦數(shù)組”.若存在,求出b的值;若不存在,請說明理由;(3)有一個三位數(shù)的自然數(shù),百位數(shù)字是1,十位數(shù)字是p,個位數(shù)字是q,若數(shù)組為“蹦蹦數(shù)組”,且該三位數(shù)是7的倍數(shù),求這個三位數(shù).28.規(guī)定:求若千個相同的有理數(shù)(均不等于)的除法運算叫做除方,如等,類比有理數(shù)的乘方,我們把記作,讀作“的圈次方”,記作,讀作“的圈次方”,一般地,把記作,讀作“”的圈次方.(初步探究)(1)直接寫出計算結果:;;(2)關于除方,下列說法錯誤的是()A.任何非零數(shù)的圈次方都等于B.對于任何正整數(shù)C.D.負數(shù)的圈奇數(shù)次方結果是負數(shù),負數(shù)的圈偶數(shù)次方結果是正數(shù)(深入思考)我們知道,有理數(shù)的減法運算可以轉化為加法運算,除法運算可以轉化為乘法運算,有理數(shù)的除方運算如何轉化為乘方運算呢?(3)試一試:,依照前面的算式,將,的運算結果直接寫成冪的形式是,;(4)想一想:將一個非零有理數(shù)的圓次方寫成冪的形式是:;(5)算一算:.29.在已有運算的基礎上定義一種新運算:,的運算級別高于加減乘除運算,即的運算順序要優(yōu)先于運算,試根據(jù)條件回答下列問題.(1)計算:;(2)若,則;(3)在數(shù)軸上,數(shù)的位置如下圖所示,試化簡:;(4)如圖所示,在數(shù)軸上,點分別以1個單位每秒的速度從表示數(shù)-1和3的點開始運動,點向正方向運動,點向負方向運動,秒后點分別運動到表示數(shù)和的點所在的位置,當時,求的值.30.數(shù)學中有很多的可逆的推理.如果,那么利用可逆推理,已知n可求b的運算,記為,如,則,則.①根據(jù)定義,填空:_________,__________.②若有如下運算性質:.根據(jù)運算性質填空,填空:若,則__________;___________;③下表中與數(shù)x對應的有且只有兩個是錯誤的,請直接找出錯誤并改正.x1.5356891227錯誤的式子是__________,_____________;分別改為__________,_____________.【參考答案】***試卷處理標記,請不要刪除一、選擇題1.B解析:B【分析】分別根據(jù)無理數(shù)的定義、同位角的定義、平行線的判定逐個判斷即可.【詳解】解:①兩個無理數(shù)的和可能是無理數(shù),比如:π+π=2π,故①是真命題;②兩條直線被第三條直線所截,同位角不一定相等,故②是假命題;③同一平面內,垂直于同一條直線的兩條直線互相平行,故③是真命題;④在同一平面內,過一點有且只有一條直線與已知直線平行,故④是假命題;⑤無理數(shù)是無限不循環(huán)小數(shù),都是無限小數(shù),故⑤是真命題.故選:B【點睛】本題考查了命題與定理的知識,解題的關鍵是了解平行線的性質及判定、無理數(shù)的定義,難度不大.2.C解析:C【分析】根據(jù),并結合數(shù)軸可知原點在q和m之間,且離m點最近,即可求解.【詳解】解:∵結合數(shù)軸可得:,即原點在q和m之間,且離m點最近,∴絕對值最小的數(shù)是m,故選:C.【點睛】本題考查實數(shù)與數(shù)軸,解題的關鍵是明確數(shù)軸的特點,利用數(shù)形結合的思想解答.3.B解析:B【分析】先估算出的取值范圍,利用“夾逼法”求得a、b的值,然后代入求值即可.【詳解】解:∵16<18<25,∴4<<5.∵a,b為兩個連續(xù)的整數(shù),且a<<b,∴a=4,b=5,∴.故選:B.【點睛】本題考查了估算無理數(shù)的大小,熟知估算無理數(shù)的大小要用逼近法是解答此題的關鍵.4.D解析:D【分析】先求出a、b的值,再計算即可.【詳解】解:∵,∴a=±5,∵,∴b=±3,當a=5,b=3時,;當a=5,b=-3時,;當a=-5,b=3時,;當a=-5,b=-3時,;故選:D.【點睛】本題考查了絕對值、平方根和有理數(shù)加法運算,解題關鍵是分類討論,準確計算.5.C解析:C【分析】先根據(jù)19位于兩個相鄰平方數(shù)16和25之間,估算的取值范圍進而得出結論.【詳解】解:由于16<19<25,所以,因此,故選:C.【點睛】本題主要考查了估算無理數(shù)的大小的能力,現(xiàn)實生活中經(jīng)常需要估算,估算應是我們具備的數(shù)學能力,“夾逼法”是估算的一般方法,也是常用方法.6.C解析:C【分析】設木塊的長為x,結合圖形知陰影部分的邊長為x-2,根據(jù)其面積為19得出(x-2)2=19,利用平方根的定義求出符合題意的x的值,由AD=2x可得答案.【詳解】解:設木塊的長為x,根據(jù)題意,知:(x-2)2=19,則,∴或(舍去)則,故選:C.【點睛】本題主要考查算術平方根,解題的關鍵是結合圖形得出木塊長、寬與陰影部分面積間的關系.7.D解析:D【分析】根據(jù)相反數(shù)、絕對值、數(shù)軸表示數(shù)以及有理數(shù)的乘法運算等知識綜合進行判斷即可.【詳解】解:符號相反,但絕對值不等的兩個數(shù)就不是相反數(shù),例如5和-3,因此①不正確;a≠0,即a>0或a<0,也就是a是正數(shù)或負數(shù),因此|a|>0,所以②正確;例如-1>-3,而(-1)2<(-3)2,因此③不正確;例如-5表示的點到原點的距離比1表示的點到原點的距離遠,但-5<1,因此④不正確;數(shù)軸上的點與實數(shù)一一對應,而實數(shù)包括有理數(shù)和無理數(shù),因此⑤正確;綜上所述,錯誤的結論有:①③④,故選:D.【點睛】本題考查相反數(shù)、絕對值、數(shù)軸表示數(shù),對每個選項進行判斷是得出正確答案的前提.8.B解析:B【分析】將2,24,27,n分解為兩個正整數(shù)的積的形式,再找到相差最少的兩個數(shù),讓較小的數(shù)除以較大的數(shù)進行排除即可.【詳解】解:∵2=1×2,∴F(2)=,故①正確;∵24=1×24=2×12=3×8=4×6,且4和6的差絕對值最小∴F(24)=,故②是錯誤的;∵27=1×27=3×9,且3和9的絕對值差最小∴F(27)=,故③錯誤;∵n是一個完全平方數(shù),∴n能分解成兩個相等的數(shù)的積,則F(n)=1,故④是正確的.正確的共有2個.故答案為B.【點睛】本題考查有理數(shù)的混合運算與信息獲取能力,解決本題的關鍵是弄清題意、理解黃金分解的定義.9.D解析:D【分析】逐項代入,尋找正確答案即可.【詳解】解:A選項滿足m≤n,則y=2m+1=3;B選項不滿足m≤n,則y=2n-1=-1;C選項滿足m≤n,則y=2m-1=3;D選項不滿足m≤n,則y=2n-1=1;故答案為D;【點睛】本題考查了根據(jù)條件代數(shù)式求值問題,解答的關鍵在于根據(jù)條件正確的所代入代數(shù)式及代入得值.10.D解析:D【分析】根據(jù)A、C、O、B四點在數(shù)軸上的位置以及絕對值的定義即可得出答案.【詳解】∵|m-5|表示點M與5表示的點B之間的距離,|m?c|表示點M與數(shù)c表示的點C之間的距離,|m-5|=|m?c|,∴MB=MC.∴點M在線段OB上.故選:D.【點睛】本題考查的是實數(shù)與數(shù)軸,熟知實數(shù)與數(shù)軸上各點是一一對應的關系是解答此題的關鍵.二、填空題11.﹣2或﹣1或0或1或2.【分析】有三種情況:①當時,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②當時,[x]=0,(x)=0,[x)=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三種情況:①當時,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②當時,[x]=0,(x)=0,[x)=0,∴[x]+(x)+[x)=0;③當時,[x]=0,(x)=1,[x)=0或1,∴[x]+(x)+[x)=1或2;綜上所述,化簡[x]+(x)+[x)的結果是-2或﹣1或0或1或2.故答案為-2或﹣1或0或1或2.點睛:本題是一道閱讀理解題.讀懂題意并進行分類討論是解題的關鍵.【詳解】請在此輸入詳解!12.5【解析】利用題中的新定義可得:2?(﹣1)=4﹣(﹣1)=4+1=5.故答案為:5.點睛:此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關鍵.解析:5【解析】利用題中的新定義可得:2?(﹣1)=4﹣(﹣1)=4+1=5.故答案為:5.點睛:此題考查了有理數(shù)的混合運算,熟練掌握運算法則是解本題的關鍵.13..【詳解】根據(jù)題意按規(guī)律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根據(jù)以上分析bn=2(1-a1)(1-a2)…(1-an)=.“點睛”本題解析:.【詳解】根據(jù)題意按規(guī)律求解:b1=2(1-a1)=,b2=2(1-a1)(1-a2)=,…,所以可得:bn=.解:根據(jù)以上分析bn=2(1-a1)(1-a2)…(1-an)=.“點睛”本題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.本題中表示b值時要先算出a的值,要注意a中n的取值.14.6174【分析】任選四個不同的數(shù)字,組成個最大的數(shù)和一個最小的數(shù),用大數(shù)減去小數(shù),如1234,4321-

1234=

3087,8730-378=

8352

,8532一2358=

617解析:6174【分析】任選四個不同的數(shù)字,組成個最大的數(shù)和一個最小的數(shù),用大數(shù)減去小數(shù),如1234,4321-

1234=

3087,8730-378=

8352

,8532一2358=

6174,6174是符合條件的4位數(shù)中唯一會產(chǎn)生循環(huán)的(7641-1467=

6174)

這個在數(shù)學上被稱之為卡普耶卡(Kaprekar)猜想.【詳解】任選四個不同的數(shù)字,組成一個最大的數(shù)和一個最小的數(shù),用大數(shù)減去小數(shù),用所得的結果的四位數(shù)重復上述的過程,最多七步必得6174,如1234,4321-1234

=3087,8730

-378

=

8352,8532-2358=

6174,這一現(xiàn)象在數(shù)學上被稱之為卡普耶卡(Kaprekar)猜想,故答案為:6174.【點睛】此題考查數(shù)字的規(guī)律運算,正確理解題意通過計算發(fā)現(xiàn)規(guī)律并運用解題是關鍵.15.【分析】觀察給出的等式得到:從1開始的連續(xù)2個奇數(shù)和是22,連續(xù)3個奇數(shù)和是32,連續(xù)4個,5個奇數(shù)和分別為42,52…根據(jù)規(guī)律即可猜想從1開始的連續(xù)n個奇數(shù)的和,據(jù)此可解.【詳解】解:∵從解析:【分析】觀察給出的等式得到:從1開始的連續(xù)2個奇數(shù)和是22,連續(xù)3個奇數(shù)和是32,連續(xù)4個,5個奇數(shù)和分別為42,52…根據(jù)規(guī)律即可猜想從1開始的連續(xù)n個奇數(shù)的和,據(jù)此可解.【詳解】解:∵從1開始的連續(xù)2個奇數(shù)和是22,連續(xù)3個奇數(shù)和是32,連續(xù)4個,5個奇數(shù)和分別為42,52…;∴從1開始的連續(xù)n個奇數(shù)的和:1+3+5+7+…+(2n-1)=n2;

∴2n-1=2019;∴n=1010;∴1+3+5+7…+2019=10102;故答案是:10102.【點睛】此題主要考查學生對規(guī)律型題的掌握,關鍵是要對給出的等式進行仔細觀察分析,發(fā)現(xiàn)規(guī)律,根據(jù)規(guī)律解題.16..【分析】利用正方形的面積公式求出正方形的邊長,再求出原點到點A的距離(即點A的絕對值),然后根據(jù)數(shù)軸上原點左邊的數(shù)為負數(shù)即可求出點A表示的數(shù).【詳解】∵正方形的面積為3,∴正方形的邊長為解析:.【分析】利用正方形的面積公式求出正方形的邊長,再求出原點到點A的距離(即點A的絕對值),然后根據(jù)數(shù)軸上原點左邊的數(shù)為負數(shù)即可求出點A表示的數(shù).【詳解】∵正方形的面積為3,∴正方形的邊長為,∴A點距離0的距離為∴點A表示的數(shù)為.【點睛】本題考查實數(shù)與數(shù)軸,解決本題時需注意圓的半徑即是點A到1的距離,而求A點表示的數(shù)時,需求出A點到原點的距離即A點的絕對值,再根據(jù)絕對值的性質和數(shù)軸上點的特征求解.17..【解析】試題分析:設S=1+m+m2+m3+m4+…+m2016…①,在①式的兩邊都乘以m,得:mS=m+m2+m3+m4+…+m2016+m2017…②②一①得:解析:.【解析】試題分析:設S=1+m+m2+m3+m4+…+m2016…①,在①式的兩邊都乘以m,得:mS=m+m2+m3+m4+…+m2016+m2017…②②一①得:mS―S=m2017-1.∴S=.考點:閱讀理解題;規(guī)律探究題.18.【分析】根據(jù)數(shù)的排列方法可知,第一排:1個數(shù),第二排2個數(shù).第三排3個數(shù),第四排4個數(shù),…第m-1排有(m-1)個數(shù),從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數(shù),根據(jù)數(shù)的排列解析:【分析】根據(jù)數(shù)的排列方法可知,第一排:1個數(shù),第二排2個數(shù).第三排3個數(shù),第四排4個數(shù),…第m-1排有(m-1)個數(shù),從第一排到(m-1)排共有:1+2+3+4+…+(m-1)個數(shù),根據(jù)數(shù)的排列方法,每四個數(shù)一個輪回,根據(jù)題目意思找出第m排第n個數(shù)到底是哪個數(shù)后再計算.【詳解】解:(7,3)表示第7排從左向右第3個數(shù),可以看出奇數(shù)排最中間的一個數(shù)都是1,1+2+3+4+5+6+3=24,24÷4=6,則(7,3)所表示的數(shù)是,故答案為.【點睛】此題主要考查了數(shù)字的變化規(guī)律,這類題型在中考中經(jīng)常出現(xiàn).判斷出所求的數(shù)是第幾個數(shù)是解決本題的難點;得到相應的變化規(guī)律是解決本題的關鍵.19.0【分析】根據(jù)非負數(shù)的性質列式求出x、y,然后代入代數(shù)式進行計算即可得解.【詳解】解:∵+(y+1)2=0∴x﹣1=0,y+1=0,解得x=1,y=﹣1,所以,(x+y)3=(1﹣1)解析:0【分析】根據(jù)非負數(shù)的性質列式求出x、y,然后代入代數(shù)式進行計算即可得解.【詳解】解:∵+(y+1)2=0∴x﹣1=0,y+1=0,解得x=1,y=﹣1,所以,(x+y)3=(1﹣1)3=0.故答案為:0.【點睛】本題考查了非負數(shù)的性質.解題的關鍵是掌握非負數(shù)的性質:幾個非負數(shù)的和為0時,這幾個非負數(shù)都為0.20.【分析】將,轉化為2ax=x來解答.【詳解】解:∵可轉化為:2ax=x,即,∵不論x取何值,都成立,∴,解得:,故答案為:.【點睛】本題考查實數(shù)的運算,正確理解題目中的新運算是解析:【分析】將,轉化為2ax=x來解答.【詳解】解:∵可轉化為:2ax=x,即,∵不論x取何值,都成立,∴,解得:,故答案為:.【點睛】本題考查實數(shù)的運算,正確理解題目中的新運算是解題的關鍵.三、解答題21.(1);;(2)①2;3;6.②這個乘客花費7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里.【分析】(1)根據(jù)題意,確定實數(shù)左側第一個整數(shù)點所對應的數(shù)即得;(2)①根據(jù)表格確定乘坐里程的對應段,然后將乘坐里程分段計費并累加即得;②根據(jù)表格將每段的費用從左至右依次累加直至費用為7元,進而確定7元乘坐的具體里程即得.【詳解】(1)∵∴∵∴故答案為:;.(2)①∵∴3.07公里需要2元∵∴7.93公里所需費用分為兩段即:前4公里2元,后3.93公里1元∴7.93公里所需費用為:(元)∵∴公里所需費用分為三段計費即:前4公里2元,4至12公里2元,12公里至19.17公里2元;∴公里所需費用為:(元)故答案為:2;3;6.②由題意得:乘坐24公里所需費用分為三段:前4公里2元,4至12公里2元,12公里至24公里2元;∴乘坐24公里所需費用為:(元)∵由表格可知:乘坐24公里以上的部分,每一元可以坐8公里∴7元可以乘坐的地鐵最大里程為:(公里)∴這個乘客花費7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里答:這個乘客花費7元乘坐的地鐵行駛的路程范圍為:大于公里小于等于32公里.【點睛】本題是閱讀材料題,考查了實數(shù)的實際應用,根據(jù)材料中的新定義舉一反三并挖掘材料中深層次含義是解題關鍵.22.(1)①兩;②8;③5;④58;(2)①24;②56.【分析】(1)①根據(jù)例題進行推理得出答案;②根據(jù)例題進行推理得出答案;③根據(jù)例題進行推理得出答案;④根據(jù)②③得出答案;(2)①先判斷它的立方根是幾位數(shù),再判斷個位、十位上的數(shù)字,即可得到結論;②先判斷它的立方根是幾位數(shù),再判斷個位、十位上的數(shù)字,即可得到結論.【詳解】(1)①,,∴,∴能確定195112的立方根是一個兩位數(shù),故答案為:兩;②∵195112的個位數(shù)字是2,又∵,∴能確定195112的個位數(shù)字是8,故答案為:8;③如果劃去195112后面三位112得到數(shù)195,而,∴,可得,由此能確定195112的立方根的十位數(shù)是5,故答案為:5;④根據(jù)②③可得:195112的立方根是58,故答案為:58;(2)①13824的立方根是兩位數(shù),立方根的個位數(shù)是4,十位數(shù)是2,∴13824的立方根是24,故答案為:24;②175616的立方根是兩位數(shù),立方根的個位數(shù)是6,十位數(shù)是5,∴175616的立方根是56,故答案為:56.【點睛】此題考查立方根的性質,一個數(shù)的立方數(shù)的特點,正確理解題意仿照例題解題的能力,掌握一個數(shù)的立方數(shù)的特點是解題的關鍵.23.(1)1;5;(2)①3.807,0.807;②;.【分析】(1)根據(jù)布谷數(shù)的定義把2和32化為底數(shù)為2的冪即可得出答案;(2)①根據(jù)布谷數(shù)的運算性質,g(14)=g(2×7)=g(2)+g(7),,再代入數(shù)值可得解;②根據(jù)布谷數(shù)的運算性質,先將兩式化為,,再代入求解.【詳解】解:(1)g(2)=g(21)=1,g(32)=g(25)=5;故答案為1,32;(2)①g(14)=g(2×7)=g(2)+g(7),∵g(7)=2.807,g(2)=1,∴g(14)=3.807;g(4)=g(22)=2,∴=g(7)-g(4)=2.807-2=0.807;故答案為3.807,0.807;②∵.∴;.【點睛】本題考查有理數(shù)的乘方運算,新定義;能夠將新定義的運算轉化為有理數(shù)的乘方運算是解題的關鍵.24.初步探究:(1),-8;深入思考:(1)(?)2,()4,;(2)【分析】初步探究:(1)分別按公式進行計算即可;深入思考:(1)把除法化為乘法,第一個數(shù)不變,從第二個數(shù)開始依次變?yōu)榈箶?shù),由此分別得出結果;(2)結果前兩個數(shù)相除為1,第三個數(shù)及后面的數(shù)變?yōu)?,則;【詳解】解:初步探究:(1)2③=2÷2÷2=,;深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(?)2=(?)2;5⑥=5÷5÷5÷5÷5÷5=()4;同理可得:(﹣)⑩=;(2)【點睛】本題是有理數(shù)的混合運算,也是一個新定義的理解與運用;一方面考查了有理數(shù)的乘除法及乘方運算,另一方面也考查了學生的閱讀理解能力;注意:負數(shù)的奇數(shù)次方為負數(shù),負數(shù)的偶數(shù)次方為正數(shù),同時也要注意分數(shù)的乘方要加括號,對新定義,其實就是多個數(shù)的除法運算,要注意運算順序.25.初步探究:(1),8;(2)C;深入思考:(1),,;(2);(3)-5.【分析】初步探究:(1)根據(jù)除方運算的定義即可得出答案;(2)根據(jù)除方運算的定義逐一判斷即可得出答案;深入思考:(1)根據(jù)除方運算的定義即可得出答案;(2)根據(jù)(1)即可總結出(2)中的規(guī)律;(3)先按照除方的定義將每個數(shù)的圈n次方算出來,再根據(jù)有理數(shù)的混合運算法則即可得出答案.【詳解】解:初步探究:(1)2③=2÷2÷2=()⑤=(2)A:任何非零數(shù)的圈2次方就是兩個相同數(shù)相除,所以都等于1,故選項A錯誤;B:因為多少個1相除都是1,所以對于任何正整數(shù)n,1?都等于1,故選項B錯誤;C:3④=3÷3÷3÷3=,4③=4÷4÷4=,3④≠4③,故選項C正確;D:負數(shù)的圈奇數(shù)次方,相當于奇數(shù)個負數(shù)相除,則結果是負數(shù);負數(shù)的圈偶數(shù)次方,相當于偶數(shù)個負數(shù)相除,則結果是正數(shù),故選項D錯誤;故答案選擇:C.深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=

5⑥=5÷5÷5÷5÷5÷5=(-)⑩=(2)a?=a÷a÷a…÷a=(3)原式====-5【點睛】本題主要考查了除方運算,運用到的知識點是有理數(shù)的混合運算,掌握有理數(shù)混合運算的法則是解決本題的關鍵.26.(1),1;(2)兩位正整數(shù)為39,28,17,的最大值為;(3)①;②【分析】(1)仿照樣例進行計算即可;(2)由題設可以看出交換前原數(shù)的十位上數(shù)字為a,個位上數(shù)字為b,則原數(shù)可以表示為,交換后十位上數(shù)字為b,個位上數(shù)字為a,則交換后數(shù)字可以表示為,根據(jù)“交換其個位上的數(shù)字與十位上的數(shù)字得到的新數(shù)減去原數(shù)所得的差為54”確定出a與b的關系式,進而求出所有的兩位數(shù),然后求解確定出的最大值即可;(3)根據(jù)樣例分解計算即可.【詳解】解:(1)∵,∴;∵,∴,故答案為:;1;(2)由題意可得:交換后的數(shù)減去交換前的數(shù)的差為:,∴,∵,∴或或,∴t為39,28,17;∵39=1×39=3×13,∴;28=1×28=2×14=4×7,∴=;17=1×17,∴;∴的最大值.(3)①∵∴;②∴;故答案為:;【點睛】本題主要考查了有理數(shù)的運算,理解最佳分解的定義,并將其轉化為有理數(shù)的運算是解題的關鍵.27.(1)(437,307,177)是“蹦蹦數(shù)組”,(601,473,346)不是“蹦蹦數(shù)組”;(2)存在,數(shù)組為(532,395,258);(3)這個三位數(shù)是147.【分析】(1)由“蹦蹦數(shù)組”的定義進行驗證即可;(2)設s為,t為,則,先后求得n、s的值,根據(jù)“蹦蹦數(shù)組”的定義即可求解;(3)設這個數(shù)為,則,由和都是0到9的正整數(shù),列舉法即可得出這個三位數(shù).【詳解】解:(1)數(shù)組(437,307,177)中,437-307=130,307-177=130,∴437-307=307-177,故(437,307,177)是“蹦蹦數(shù)組”;數(shù)組(601,473,346)中,601-473=128,473-346=127,∴601-473473-346,故(601,473,346)不是“蹦蹦數(shù)組”;(2)設s為,t為,則,∵m、n為整數(shù),∴,則t為258,∴s為532,而,則b為532-137=395,驗算:532-395=395-258=137,故數(shù)組為(532,395,258);(3)根據(jù)題意,設這個數(shù)為,則,∴,而和都是0到9的正整數(shù),討論:p12345q13579111123135147159而是7的倍數(shù)的三位數(shù)只有147,且1-4=4-7=-3,數(shù)組(1,4,7)為“蹦蹦數(shù)組”,故這個三位數(shù)是147.【點睛】本題是一道新定義題目,解決的關鍵是能夠根據(jù)定義,通過列舉法找到合適的數(shù),進而求解.28.(1),;(2)C;(3),;(4);(5)-5.【分析】概念學習:(1)分別按公式進行計算即可;(2)根據(jù)定義依次判定即可;深入思考:(3)由冪的乘方和除方的定義進行變形,即可得到答案;(4)把除法化為乘法,第一個數(shù)不變,從第二個數(shù)開始依次變?yōu)榈箶?shù),結果第一個數(shù)不變?yōu)閍,第二個數(shù)及后面的數(shù)變?yōu)?,則;(5)將第二問的規(guī)律代入計算,注

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論