2023-2024學(xué)年安徽省淮南一中高三2月模擬(一)數(shù)學(xué)試題_第1頁
2023-2024學(xué)年安徽省淮南一中高三2月模擬(一)數(shù)學(xué)試題_第2頁
2023-2024學(xué)年安徽省淮南一中高三2月模擬(一)數(shù)學(xué)試題_第3頁
2023-2024學(xué)年安徽省淮南一中高三2月模擬(一)數(shù)學(xué)試題_第4頁
2023-2024學(xué)年安徽省淮南一中高三2月模擬(一)數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年安徽省淮南一中高三2月模擬(一)數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.《易經(jīng)》包含著很多哲理,在信息學(xué)、天文學(xué)中都有廣泛的應(yīng)用,《易經(jīng)》的博大精深,對今天的幾何學(xué)和其它學(xué)科仍有深刻的影響.下圖就是易經(jīng)中記載的幾何圖形——八卦田,圖中正八邊形代表八卦,中間的圓代表陰陽太極圖,八塊面積相等的曲邊梯形代表八卦田.已知正八邊形的邊長為,陰陽太極圖的半徑為,則每塊八卦田的面積約為()A. B.C. D.2.窗花是貼在窗紙或窗戶玻璃上的剪紙,是中國古老的傳統(tǒng)民間藝術(shù)之一,它歷史悠久,風(fēng)格獨(dú)特,神獸人們喜愛.下圖即是一副窗花,是把一個(gè)邊長為12的大正方形在四個(gè)角處都剪去邊長為1的小正方形后剩余的部分,然后在剩余部分中的四個(gè)角處再剪出邊長全為1的一些小正方形.若在這個(gè)窗花內(nèi)部隨機(jī)取一個(gè)點(diǎn),則該點(diǎn)不落在任何一個(gè)小正方形內(nèi)的概率是()A. B. C. D.3.若直線l不平行于平面α,且l?α,則()A.α內(nèi)所有直線與l異面B.α內(nèi)只存在有限條直線與l共面C.α內(nèi)存在唯一的直線與l平行D.α內(nèi)存在無數(shù)條直線與l相交4.正三棱錐底面邊長為3,側(cè)棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.5.若(1+2ai)i=1-bi,其中a,b∈R,則|a+bi|=().A. B. C. D.56.函數(shù)的圖象為C,以下結(jié)論中正確的是()①圖象C關(guān)于直線對稱;②圖象C關(guān)于點(diǎn)對稱;③由y=2sin2x的圖象向右平移個(gè)單位長度可以得到圖象C.A.① B.①② C.②③ D.①②③7.已知拋物線和點(diǎn),直線與拋物線交于不同兩點(diǎn),,直線與拋物線交于另一點(diǎn).給出以下判斷:①以為直徑的圓與拋物線準(zhǔn)線相離;②直線與直線的斜率乘積為;③設(shè)過點(diǎn),,的圓的圓心坐標(biāo)為,半徑為,則.其中,所有正確判斷的序號是()A.①② B.①③ C.②③ D.①②③8.某幾何體的三視圖如圖所示,三視圖是腰長為1的等腰直角三角形和邊長為1的正方形,則該幾何體中最長的棱長為().A. B. C.1 D.9.的展開式中的項(xiàng)的系數(shù)為()A.120 B.80 C.60 D.4010.以,為直徑的圓的方程是A. B.C. D.11.我國古代數(shù)學(xué)家秦九韶在《數(shù)書九章》中記述了“三斜求積術(shù)”,用現(xiàn)代式子表示即為:在中,角所對的邊分別為,則的面積.根據(jù)此公式,若,且,則的面積為()A. B. C. D.12.執(zhí)行如圖所示的程序框圖,則輸出的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.正四棱柱中,,.若是側(cè)面內(nèi)的動(dòng)點(diǎn),且,則與平面所成角的正切值的最大值為___________.14.函數(shù)f(x)=x2﹣xlnx的圖象在x=1處的切線方程為_____.15.已知數(shù)列是各項(xiàng)均為正數(shù)的等比數(shù)列,若,則的最小值為________.16.已知函數(shù),令,,若,表示不超過實(shí)數(shù)的最大整數(shù),記數(shù)列的前項(xiàng)和為,則_________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在四棱錐中,底面是平行四邊形,為其中心,為銳角三角形,且平面底面,為的中點(diǎn),.(1)求證:平面;(2)求證:.18.(12分)心形線是由一個(gè)圓上的一個(gè)定點(diǎn),當(dāng)該圓在繞著與其相切且半徑相同的另外一個(gè)圓周上滾動(dòng)時(shí),這個(gè)定點(diǎn)的軌跡,因其形狀像心形而得名,在極坐標(biāo)系中,方程()表示的曲線就是一條心形線,如圖,以極軸所在的直線為軸,極點(diǎn)為坐標(biāo)原點(diǎn)的直角坐標(biāo)系中.已知曲線的參數(shù)方程為(為參數(shù)).(1)求曲線的極坐標(biāo)方程;(2)若曲線與相交于、、三點(diǎn),求線段的長.19.(12分)在世界讀書日期間,某地區(qū)調(diào)查組對居民閱讀情況進(jìn)行了調(diào)查,獲得了一個(gè)容量為200的樣本,其中城鎮(zhèn)居民140人,農(nóng)村居民60人.在這些居民中,經(jīng)常閱讀的城鎮(zhèn)居民有100人,農(nóng)村居民有30人.(1)填寫下面列聯(lián)表,并判斷能否有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān)?城鎮(zhèn)居民農(nóng)村居民合計(jì)經(jīng)常閱讀10030不經(jīng)常閱讀合計(jì)200(2)調(diào)查組從該樣本的城鎮(zhèn)居民中按分層抽樣抽取出7人,參加一次閱讀交流活動(dòng),若活動(dòng)主辦方從這7位居民中隨機(jī)選取2人作交流發(fā)言,求被選中的2位居民都是經(jīng)常閱讀居民的概率.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82820.(12分)有最大值,且最大值大于.(1)求的取值范圍;(2)當(dāng)時(shí),有兩個(gè)零點(diǎn),證明:.(參考數(shù)據(jù):)21.(12分)改革開放40年,我國經(jīng)濟(jì)取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強(qiáng).為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進(jìn)行一次全市駕駛員交通安全意識調(diào)查.隨機(jī)抽取男女駕駛員各50人,進(jìn)行問卷測評,所得分?jǐn)?shù)的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識強(qiáng).安全意識強(qiáng)安全意識不強(qiáng)合計(jì)男性女性合計(jì)(Ⅰ)求的值,并估計(jì)該城市駕駛員交通安全意識強(qiáng)的概率;(Ⅱ)已知交通安全意識強(qiáng)的樣本中男女比例為4:1,完成2×2列聯(lián)表,并判斷有多大把握認(rèn)為交通安全意識與性別有關(guān);(Ⅲ)在(Ⅱ)的條件下,從交通安全意識強(qiáng)的駕駛員中隨機(jī)抽取2人,求抽到的女性人數(shù)的分布列及期望.附:,其中0.0100.0050.0016.6357.87910.82822.(10分)(選修4-4:坐標(biāo)系與參數(shù)方程)在平面直角坐標(biāo)系,已知曲線(為參數(shù)),在以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)過點(diǎn)且與直線平行的直線交于,兩點(diǎn),求點(diǎn)到,的距離之積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

由圖利用三角形的面積公式可得正八邊形中每個(gè)三角形的面積,再計(jì)算出圓面積的,兩面積作差即可求解.【詳解】由圖,正八邊形分割成個(gè)等腰三角形,頂角為,設(shè)三角形的腰為,由正弦定理可得,解得,所以三角形的面積為:,所以每塊八卦田的面積約為:.故選:B【點(diǎn)睛】本題考查了正弦定理解三角形、三角形的面積公式,需熟記定理與面積公式,屬于基礎(chǔ)題.2.D【解析】

由幾何概型可知,概率應(yīng)為非小正方形面積與窗花面積的比,即可求解.【詳解】由題,窗花的面積為,其中小正方形的面積為,所以所求概率,故選:D【點(diǎn)睛】本題考查幾何概型的面積公式的應(yīng)用,屬于基礎(chǔ)題.3.D【解析】

通過條件判斷直線l與平面α相交,于是可以判斷ABCD的正誤.【詳解】根據(jù)直線l不平行于平面α,且l?α可知直線l與平面α相交,于是ABC錯(cuò)誤,故選D.【點(diǎn)睛】本題主要考查直線與平面的位置關(guān)系,直線與直線的位置關(guān)系,難度不大.4.D【解析】

由側(cè)棱與底面所成角及底面邊長求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側(cè)棱與底面所成的角,即=60°,由底面邊長為3得,∴.正三棱錐外接球球心必在上,設(shè)球半徑為,則由得,解得,∴.故選:D.【點(diǎn)睛】本題考查球體積,考查正三棱錐與外接球的關(guān)系.掌握正棱錐性質(zhì)是解題關(guān)鍵.5.C【解析】試題分析:由已知,-2a+i=1-bi,根據(jù)復(fù)數(shù)相等的充要條件,有a=-,b=-1所以|a+bi|=,選C考點(diǎn):復(fù)數(shù)的代數(shù)運(yùn)算,復(fù)數(shù)相等的充要條件,復(fù)數(shù)的模6.B【解析】

根據(jù)三角函數(shù)的對稱軸、對稱中心和圖象變換的知識,判斷出正確的結(jié)論.【詳解】因?yàn)?,又,所以①正確.,所以②正確.將的圖象向右平移個(gè)單位長度,得,所以③錯(cuò)誤.所以①②正確,③錯(cuò)誤.故選:B【點(diǎn)睛】本小題主要考查三角函數(shù)的對稱軸、對稱中心,考查三角函數(shù)圖象變換,屬于基礎(chǔ)題.7.D【解析】

對于①,利用拋物線的定義,利用可判斷;對于②,設(shè)直線的方程為,與拋物線聯(lián)立,用坐標(biāo)表示直線與直線的斜率乘積,即可判斷;對于③,將代入拋物線的方程可得,,從而,,利用韋達(dá)定理可得,再由,可用m表示,線段的中垂線與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,可得a,即可判斷.【詳解】如圖,設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,則.所以①正確.由題意可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點(diǎn),的坐標(biāo)分別為,,則,.所以.則直線與直線的斜率乘積為.所以②正確.將代入拋物線的方程可得,,從而,.根據(jù)拋物線的對稱性可知,,兩點(diǎn)關(guān)于軸對稱,所以過點(diǎn),,的圓的圓心在軸上.由上,有,,則.所以,線段的中垂線與軸的交點(diǎn)(即圓心)橫坐標(biāo)為,所以.于是,,代入,,得,所以.所以③正確.故選:D【點(diǎn)睛】本題考查了拋物線的性質(zhì)綜合,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)形結(jié)合,數(shù)學(xué)運(yùn)算的能力,屬于較難題.8.B【解析】

首先由三視圖還原幾何體,進(jìn)一步求出幾何體的棱長.【詳解】解:根據(jù)三視圖還原幾何體如圖所示,所以,該四棱錐體的最長的棱長為.故選:B.【點(diǎn)睛】本題主要考查由三視圖還原幾何體,考查運(yùn)算能力和推理能力,屬于基礎(chǔ)題.9.A【解析】

化簡得到,再利用二項(xiàng)式定理展開得到答案.【詳解】展開式中的項(xiàng)為.故選:【點(diǎn)睛】本題考查了二項(xiàng)式定理,意在考查學(xué)生的計(jì)算能力.10.A【解析】

設(shè)圓的標(biāo)準(zhǔn)方程,利用待定系數(shù)法一一求出,從而求出圓的方程.【詳解】設(shè)圓的標(biāo)準(zhǔn)方程為,由題意得圓心為,的中點(diǎn),根據(jù)中點(diǎn)坐標(biāo)公式可得,,又,所以圓的標(biāo)準(zhǔn)方程為:,化簡整理得,所以本題答案為A.【點(diǎn)睛】本題考查待定系數(shù)法求圓的方程,解題的關(guān)鍵是假設(shè)圓的標(biāo)準(zhǔn)方程,建立方程組,屬于基礎(chǔ)題.11.A【解析】

根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因?yàn)?,所以,由余弦定理,所以,由的面積公式得故選:A【點(diǎn)睛】本題主要考查正弦定理和余弦定理以及類比推理,還考查了運(yùn)算求解的能力,屬于中檔題.12.B【解析】

列出每一次循環(huán),直到計(jì)數(shù)變量滿足退出循環(huán).【詳解】第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,退出循環(huán),輸出的為.故選:B.【點(diǎn)睛】本題考查由程序框圖求輸出的結(jié)果,要注意在哪一步退出循環(huán),是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13.2.【解析】

如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),則,,又,得即;又平面,為與平面所成角,令,當(dāng)時(shí),最大,即與平面所成角的正切值的最大值為2.故答案為:2【點(diǎn)睛】本題主要考查了立體幾何中的動(dòng)點(diǎn)問題,考查了直線與平面所成角的計(jì)算.對于這類題,一般是建立空間直角坐標(biāo),在動(dòng)點(diǎn)坐標(biāo)內(nèi)引入?yún)?shù),將最值問題轉(zhuǎn)化為函數(shù)的最值問題求解,考查了學(xué)生的運(yùn)算求解能力和直觀想象能力.14.x﹣y=0.【解析】

先將x=1代入函數(shù)式求出切點(diǎn)縱坐標(biāo),然后對函數(shù)求導(dǎo)數(shù),進(jìn)一步求出切線斜率,最后利用點(diǎn)斜式寫出切線方程.【詳解】由題意得.故切線方程為y﹣1=x﹣1,即x﹣y=0.故答案為:x﹣y=0.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)求切線方程的基本方法,利用切點(diǎn)滿足的條件列方程(組)是關(guān)鍵.同時(shí)也考查了學(xué)生的運(yùn)算能力,屬于基礎(chǔ)題.15.40【解析】

設(shè)等比數(shù)列的公比為,根據(jù),可得,因?yàn)?,根?jù)均值不等式,即可求得答案.【詳解】設(shè)等比數(shù)列的公比為,,,等比數(shù)列的各項(xiàng)為正數(shù),,,當(dāng)且僅當(dāng),即時(shí),取得最小值.故答案為:.【點(diǎn)睛】本題主要考查了求數(shù)列值的最值問題,解題關(guān)鍵是掌握等比數(shù)列通項(xiàng)公式和靈活使用均值不等式,考查了分析能力和計(jì)算能力,屬于中檔題.16.4【解析】

根據(jù)導(dǎo)數(shù)的運(yùn)算,結(jié)合數(shù)列的通項(xiàng)公式的求法,求得,,,進(jìn)而得到,再利用放縮法和取整函數(shù)的定義,即可求解.【詳解】由題意,函數(shù),且,,可得,,又由,可得為常數(shù)列,且,數(shù)列表示首項(xiàng)為4,公差為2的等差數(shù)列,所以,其中數(shù)列滿足,所以,所以,又由,可得數(shù)列的前n項(xiàng)和為,數(shù)列的前n項(xiàng)和為,所以數(shù)列的前項(xiàng)和為,滿足,所以,即,又由表示不超過實(shí)數(shù)的最大整數(shù),所以.故答案為:4.【點(diǎn)睛】本題主要考查了函數(shù)的導(dǎo)數(shù)的計(jì)算,以及等差數(shù)列的通項(xiàng)公式,累加法求解數(shù)列的通項(xiàng)公式,以及裂項(xiàng)法求數(shù)列的和的綜合應(yīng)用,著重考查了分析問題和解答問題的能力,屬于中檔試題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)證明見解析【解析】

(1)通過證明,即可證明線面平行;(2)通過證明平面,即可證明線線垂直.【詳解】(1)連,因?yàn)闉槠叫兴倪呅?,為其中心,所以,為中點(diǎn),又因?yàn)闉橹悬c(diǎn),所以,又平面,平面所以,平面;(2)作于因?yàn)槠矫嫫矫?,平面平面,平面,所以,平面又平面,所以又,,平面,平面所以,平面,又平面,所以?【點(diǎn)睛】此題考查證明線面平行和線面垂直,通過線面垂直得線線垂直,關(guān)鍵在于熟練掌握相關(guān)判定定理,找出平行關(guān)系和垂直關(guān)系證明.18.(1)();(2).【解析】

(1)化簡得到直線方程為,再利用極坐標(biāo)公式計(jì)算得到答案.(2)聯(lián)立方程計(jì)算得到,,計(jì)算得到答案.【詳解】(1)由消得,即,是過原點(diǎn)且傾斜角為的直線,∴的極坐標(biāo)方程為().(2)由得,∴,由得∴,∴.【點(diǎn)睛】本題考查了參數(shù)方程,極坐標(biāo)方程,意在考查學(xué)生的計(jì)算能力和應(yīng)用能力.19.(1)見解析,有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān).(2)【解析】

(1)根據(jù)題中數(shù)據(jù)得到列聯(lián)表,然后計(jì)算出,與臨界值表中的數(shù)據(jù)對照后可得結(jié)論;(2)由題意得概率為古典概型,根據(jù)古典概型概率公式計(jì)算可得所求.【詳解】(1)由題意可得:城鎮(zhèn)居民農(nóng)村居民合計(jì)經(jīng)常閱讀10030130不經(jīng)常閱讀403070合計(jì)14060200則,所以有99%的把握認(rèn)為經(jīng)常閱讀與居民居住地有關(guān).(2)在城鎮(zhèn)居民140人中,經(jīng)常閱讀的有100人,不經(jīng)常閱讀的有40人.采取分層抽樣抽取7人,則其中經(jīng)常閱讀的有5人,記為、、、、;不經(jīng)常閱讀的有2人,記為、.從這7人中隨機(jī)選取2人作交流發(fā)言,所有可能的情況為,,,,,,,,,,,,,,,,,,,,,共21種,被選中的位居民都是經(jīng)常閱讀居民的情況有種,所求概率為.【點(diǎn)睛】本題主要考查古典概型的概率計(jì)算,以及獨(dú)立性檢驗(yàn)的應(yīng)用,利用列舉法是解決本題的關(guān)鍵,考查學(xué)生的計(jì)算能力.對于古典概型,要求事件總數(shù)是可數(shù)的,滿足條件的事件個(gè)數(shù)可數(shù),使得滿足條件的事件個(gè)數(shù)除以總的事件個(gè)數(shù)即可,屬于中檔題.20.(1);(2)證明見解析.【解析】

(1)求出函數(shù)的定義域?yàn)?,,分和兩種情況討論,分析函數(shù)的單調(diào)性,求出函數(shù)的最大值,即可得出關(guān)于實(shí)數(shù)的不等式,進(jìn)而可求得實(shí)數(shù)的取值范圍;(2)利用導(dǎo)數(shù)分析出函數(shù)在上遞增,在上遞減,可得出,由,構(gòu)造函數(shù),證明出,進(jìn)而得出,再由函數(shù)在區(qū)間上的單調(diào)性可證得結(jié)論.【詳解】(1)函數(shù)的定義域?yàn)?,?當(dāng)時(shí),對任意的,,此時(shí)函數(shù)在上為增函數(shù),函數(shù)為最大值;當(dāng)時(shí),令,得.當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增;當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞減.所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論