2023-2024學(xué)年安徽省黃山市普通高中高三下期摸底考試數(shù)學(xué)試題試卷_第1頁
2023-2024學(xué)年安徽省黃山市普通高中高三下期摸底考試數(shù)學(xué)試題試卷_第2頁
2023-2024學(xué)年安徽省黃山市普通高中高三下期摸底考試數(shù)學(xué)試題試卷_第3頁
2023-2024學(xué)年安徽省黃山市普通高中高三下期摸底考試數(shù)學(xué)試題試卷_第4頁
2023-2024學(xué)年安徽省黃山市普通高中高三下期摸底考試數(shù)學(xué)試題試卷_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年安徽省黃山市普通高中高三下期摸底考試數(shù)學(xué)試題試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知邊長為4的菱形,,為的中點,為平面內(nèi)一點,若,則()A.16 B.14 C.12 D.82.設(shè)是兩條不同的直線,是兩個不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則3.函數(shù)的部分圖象如圖所示,則()A.6 B.5 C.4 D.34.已知函數(shù),,則的極大值點為()A. B. C. D.5.給出下列四個命題:①若“且”為假命題,則﹑均為假命題;②三角形的內(nèi)角是第一象限角或第二象限角;③若命題,,則命題,;④設(shè)集合,,則“”是“”的必要條件;其中正確命題的個數(shù)是()A. B. C. D.6.曲線上任意一點處的切線斜率的最小值為()A.3 B.2 C. D.17.已知函數(shù),則下列結(jié)論錯誤的是()A.函數(shù)的最小正周期為πB.函數(shù)的圖象關(guān)于點對稱C.函數(shù)在上單調(diào)遞增D.函數(shù)的圖象可由的圖象向左平移個單位長度得到8.某中學(xué)有高中生人,初中生人為了解該校學(xué)生自主鍛煉的時間,采用分層抽樣的方法從高生和初中生中抽取一個容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.9.我國古代數(shù)學(xué)巨著《九章算術(shù)》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據(jù)上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數(shù)是()A.2 B.3 C.4 D.110.已知函數(shù)的最小正周期為的圖象向左平移個單位長度后關(guān)于軸對稱,則的單調(diào)遞增區(qū)間為()A. B.C. D.11.已知實數(shù)x,y滿足約束條件,若的最大值為2,則實數(shù)k的值為()A.1 B. C.2 D.12.已知集合,則集合()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知邊長為的菱形中,,現(xiàn)沿對角線折起,使得二面角為,此時點,,,在同一個球面上,則該球的表面積為________.14.如圖所示,在△ABC中,AB=AC=2,,,AE的延長線交BC邊于點F,若,則____.15.在棱長為的正方體中,是正方形的中心,為的中點,過的平面與直線垂直,則平面截正方體所得的截面面積為______.16.已知拋物線C:y2=4x的焦點為F,準(zhǔn)線為l,P為C上一點,PQ垂直l于點Q,M,N分別為PQ,PF的中點,MN與x軸相交于點R,若∠NRF=60°,則|FR|等于_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若在處導(dǎo)數(shù)相等,證明:;(2)若對于任意,直線與曲線都有唯一公共點,求實數(shù)的取值范圍.18.(12分)設(shè)函數(shù),().(1)若曲線在點處的切線方程為,求實數(shù)a、m的值;(2)若對任意恒成立,求實數(shù)a的取值范圍;(3)關(guān)于x的方程能否有三個不同的實根?證明你的結(jié)論.19.(12分)在①,②,③這三個條件中任選一個,補(bǔ)充在下面問題中,并解答.已知等差數(shù)列的公差為,等差數(shù)列的公差為.設(shè)分別是數(shù)列的前項和,且,,(1)求數(shù)列的通項公式;(2)設(shè),求數(shù)列的前項和.20.(12分)已知{an}是一個公差大于0的等差數(shù)列,且滿足a3a5=45,a2+a6=1.(I)求{an}的通項公式;(Ⅱ)若數(shù)列{bn}滿足:…,求{bn}的前n項和.21.(12分)如圖,已知,分別是正方形邊,的中點,與交于點,,都垂直于平面,且,,是線段上一動點.(1)當(dāng)平面,求的值;(2)當(dāng)是中點時,求四面體的體積.22.(10分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求直線與曲線的普通方程,并求出直線的傾斜角;(2)記直線與軸的交點為是曲線上的動點,求點的最大距離.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

取中點,可確定;根據(jù)平面向量線性運(yùn)算和數(shù)量積的運(yùn)算法則可求得,利用可求得結(jié)果.【詳解】取中點,連接,,,即.,,,則.故選:.【點睛】本題考查平面向量數(shù)量積的求解問題,涉及到平面向量的線性運(yùn)算,關(guān)鍵是能夠?qū)⑺笙蛄窟M(jìn)行拆解,進(jìn)而利用平面向量數(shù)量積的運(yùn)算性質(zhì)進(jìn)行求解.2.C【解析】

在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設(shè)是兩條不同的直線,是兩個不同的平面,則:在A中,若,,則與相交或平行,故A錯誤;在B中,若,,則或,故B錯誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯誤.故選C.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,是中檔題.3.A【解析】

根據(jù)正切函數(shù)的圖象求出A、B兩點的坐標(biāo),再求出向量的坐標(biāo),根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算求出結(jié)果.【詳解】由圖象得,令=0,即=kπ,k=0時解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點睛】本題考查正切函數(shù)的圖象,平面向量數(shù)量積的運(yùn)算,屬于綜合題,但是難度不大,解題關(guān)鍵是利用圖象與正切函數(shù)圖象求出坐標(biāo),再根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算可得結(jié)果,屬于簡單題.4.A【解析】

求出函數(shù)的導(dǎo)函數(shù),令導(dǎo)數(shù)為零,根據(jù)函數(shù)單調(diào)性,求得極大值點即可.【詳解】因為,故可得,令,因為,故可得或,則在區(qū)間單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,故的極大值點為.故選:A.【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)的極值點,屬基礎(chǔ)題.5.B【解析】

①利用真假表來判斷,②考慮內(nèi)角為,③利用特稱命題的否定是全稱命題判斷,④利用集合間的包含關(guān)系判斷.【詳解】若“且”為假命題,則﹑中至少有一個是假命題,故①錯誤;當(dāng)內(nèi)角為時,不是象限角,故②錯誤;由特稱命題的否定是全稱命題知③正確;因為,所以,所以“”是“”的必要條件,故④正確.故選:B.【點睛】本題考查命題真假的問題,涉及到“且”命題、特稱命題的否定、象限角、必要條件等知識,是一道基礎(chǔ)題.6.A【解析】

根據(jù)題意,求導(dǎo)后結(jié)合基本不等式,即可求出切線斜率,即可得出答案.【詳解】解:由于,根據(jù)導(dǎo)數(shù)的幾何意義得:,即切線斜率,當(dāng)且僅當(dāng)?shù)忍柍闪?,所以上任意一點處的切線斜率的最小值為3.故選:A.【點睛】本題考查導(dǎo)數(shù)的幾何意義的應(yīng)用以及運(yùn)用基本不等式求最值,考查計算能力.7.D【解析】

由可判斷選項A;當(dāng)時,可判斷選項B;利用整體換元法可判斷選項C;可判斷選項D.【詳解】由題知,最小正周期,所以A正確;當(dāng)時,,所以B正確;當(dāng)時,,所以C正確;由的圖象向左平移個單位,得,所以D錯誤.故選:D.【點睛】本題考查余弦型函數(shù)的性質(zhì),涉及到周期性、對稱性、單調(diào)性以及圖象變換后的解析式等知識,是一道中檔題.8.B【解析】

利用某一層樣本數(shù)等于某一層的總體個數(shù)乘以抽樣比計算即可.【詳解】由題意,,解得.故選:B.【點睛】本題考查簡單隨機(jī)抽樣中的分層抽樣,某一層樣本數(shù)等于某一層的總體個數(shù)乘以抽樣比,本題是一道基礎(chǔ)題.9.B【解析】

將問題轉(zhuǎn)化為等比數(shù)列問題,最終變?yōu)榍蠼獾缺葦?shù)列基本量的問題.【詳解】根據(jù)實際問題可以轉(zhuǎn)化為等比數(shù)列問題,在等比數(shù)列中,公比,前項和為,,,求的值.因為,解得,,解得.故選B.【點睛】本題考查等比數(shù)列的實際應(yīng)用,難度較易.熟悉等比數(shù)列中基本量的計算,對于解決實際問題很有幫助.10.D【解析】

先由函數(shù)的周期和圖象的平移后的函數(shù)的圖象性質(zhì)得出函數(shù)的解析式,從而得出的解析式,再根據(jù)正弦函數(shù)的單調(diào)遞增區(qū)間得出函數(shù)的單調(diào)遞增區(qū)間,可得選項.【詳解】因為函數(shù)的最小正周期是,所以,即,所以,的圖象向左平移個單位長度后得到的函數(shù)解析式為,由于其圖象關(guān)于軸對稱,所以,又,所以,所以,所以,因為的遞增區(qū)間是:,,由,,得:,,所以函數(shù)的單調(diào)遞增區(qū)間為().故選:D.【點睛】本題主要考查正弦型函數(shù)的周期性,對稱性,單調(diào)性,圖象的平移,在進(jìn)行圖象的平移時,注意自變量的系數(shù),屬于中檔題.11.B【解析】

畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義,求出最優(yōu)解,轉(zhuǎn)化求解即可.【詳解】可行域如圖中陰影部分所示,,,要使得z能取到最大值,則,當(dāng)時,x在點B處取得最大值,即,得;當(dāng)時,z在點C處取得最大值,即,得(舍去).故選:B.【點睛】本題考查由目標(biāo)函數(shù)最值求解參數(shù)值,數(shù)形結(jié)合思想,分類討論是解題的關(guān)鍵,屬于中檔題.12.D【解析】

弄清集合B的含義,它的元素x來自于集合A,且也是集合A的元素.【詳解】因,所以,故,又,,則,故集合.故選:D.【點睛】本題考查集合的定義,涉及到解絕對值不等式,是一道基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

分別取,的中點,,連接,由圖形的對稱性可知球心必在的延長線上,設(shè)球心為,半徑為,,由勾股定理可得、,再根據(jù)球的面積公式計算可得;【詳解】如圖,分別取,的中點,,連接,則易得,,,,由圖形的對稱性可知球心必在的延長線上,設(shè)球心為,半徑為,,可得,解得,.故該球的表面積為.故答案為:【點睛】本題考查多面體的外接球的計算,屬于中檔題.14.【解析】

過點做,可得,,由可得,可得,代入可得答案.【詳解】解:如圖,過點做,易得:,,,故,可得:,同理:,,可得,,由,可得,可得:,可得:,,故答案為:.【點睛】本題主要考查平面向量的線性運(yùn)算和平面向量的數(shù)量積,由題意作出是解題的關(guān)鍵.15.【解析】

確定平面即為平面,四邊形是菱形,計算面積得到答案.【詳解】如圖,在正方體中,記的中點為,連接,則平面即為平面.證明如下:由正方體的性質(zhì)可知,,則,四點共面,記的中點為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因為正方體的棱長為,易知四邊形是菱形,其對角線,,所以其面積.故答案為:【點睛】本題考查了正方體的截面面積,意在考查學(xué)生的空間想象能力和計算能力.16.2【解析】

由題意知:,,,.由∠NRF=60°,可得為等邊三角形,MF⊥PQ,可得F為HR的中點,即求.【詳解】不妨設(shè)點P在第一象限,如圖所示,連接MF,QF.∵拋物線C:y2=4x的焦點為F,準(zhǔn)線為l,P為C上一點∴,.∵M(jìn),N分別為PQ,PF的中點,∴,∵PQ垂直l于點Q,∴PQ//OR,∵,∠NRF=60°,∴為等邊三角形,∴MF⊥PQ,易知四邊形和四邊形都是平行四邊形,∴F為HR的中點,∴,故答案為:2.【點睛】本題主要考查拋物線的定義,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(I)見解析(II)【解析】

(1)由題x>0,,由f(x)在x=x1,x2(x1≠x2)處導(dǎo)數(shù)相等,得到,得,由韋達(dá)定理得,由基本不等式得,得,由題意得,令,則,令,,利用導(dǎo)數(shù)性質(zhì)能證明.(2)由得,令,利用反證法可證明證明恒成立.由對任意,只有一個解,得為上的遞增函數(shù),得,令,由此可求的取值范圍..【詳解】(I)令,得,由韋達(dá)定理得即,得令,則,令,則,得(II)由得令,則,,下面先證明恒成立.若存在,使得,,,且當(dāng)自變量充分大時,,所以存在,,使得,,取,則與至少有兩個交點,矛盾.由對任意,只有一個解,得為上的遞增函數(shù),得,令,則,得【點睛】本題考查函數(shù)的單調(diào)性,導(dǎo)數(shù)的運(yùn)算及其應(yīng)用,同時考查邏輯思維能力和綜合應(yīng)用能力屬難題.18.(1),;(2);(3)不能,證明見解析【解析】

(1)求出,結(jié)合導(dǎo)數(shù)的幾何意義即可求解;(2)構(gòu)造,則原題等價于對任意恒成立,即時,,利用導(dǎo)數(shù)求最值即可,值得注意的是,可以通過代特殊值,由求出的范圍,再研究該范圍下單調(diào)性;(3)構(gòu)造并進(jìn)行求導(dǎo),研究單調(diào)性,結(jié)合函數(shù)零點存在性定理證明即可.【詳解】(1),,曲線在點處的切線方程為,,解得.(2)記,整理得,由題知,對任意恒成立,對任意恒成立,即時,,,解得,當(dāng)時,對任意,,,,,即在單調(diào)遞增,此時,實數(shù)的取值范圍為.(3)關(guān)于的方程不可能有三個不同的實根,以下給出證明:記,,則關(guān)于的方程有三個不同的實根,等價于函數(shù)有三個零點,,當(dāng)時,,記,則,在單調(diào)遞增,,即,,在單調(diào)遞增,至多有一個零點;當(dāng)時,記,則,在單調(diào)遞增,即在單調(diào)遞增,至多有一個零點,則至多有兩個單調(diào)區(qū)間,至多有兩個零點.因此,不可能有三個零點.關(guān)于的方程不可能有三個不同的實根.【點睛】本題考查了導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)研究函數(shù)單調(diào)性以及函數(shù)的零點存在性定理,考查了轉(zhuǎn)化與化歸的數(shù)學(xué)思想,屬于難題.19.(1);(2)【解析】

方案一:(1)根據(jù)等差數(shù)列的通項公式及前n項和公式列方程組,求出和,從而寫出數(shù)列的通項公式;(2)由第(1)題的結(jié)論,寫出數(shù)列的通項,采用分組求和、等比求和公式以及裂項相消法,求出數(shù)列的前項和.其余兩個方案與方案一的解法相近似.【詳解】解:方案一:(1)∵數(shù)列都是等差數(shù)列,且,,解得,綜上(2)由(1)得:方案二:(1)∵數(shù)列都是等差數(shù)列,且,解得,.綜上,(2)同方案一方案三:(1)∵數(shù)列都是等差數(shù)列,且.,解得,,.綜上,(2)同方案一【點睛】本題考查了等差數(shù)列的通項公式、前n項和公式的應(yīng)用,考查了分組求和、等比求和及裂項相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論