![2025屆江蘇睢寧市數學高二上期末檢測試題含解析_第1頁](http://file4.renrendoc.com/view8/M01/03/2D/wKhkGWcSnhWAIBCyAAGnhG-Mcbo836.jpg)
![2025屆江蘇睢寧市數學高二上期末檢測試題含解析_第2頁](http://file4.renrendoc.com/view8/M01/03/2D/wKhkGWcSnhWAIBCyAAGnhG-Mcbo8362.jpg)
![2025屆江蘇睢寧市數學高二上期末檢測試題含解析_第3頁](http://file4.renrendoc.com/view8/M01/03/2D/wKhkGWcSnhWAIBCyAAGnhG-Mcbo8363.jpg)
![2025屆江蘇睢寧市數學高二上期末檢測試題含解析_第4頁](http://file4.renrendoc.com/view8/M01/03/2D/wKhkGWcSnhWAIBCyAAGnhG-Mcbo8364.jpg)
![2025屆江蘇睢寧市數學高二上期末檢測試題含解析_第5頁](http://file4.renrendoc.com/view8/M01/03/2D/wKhkGWcSnhWAIBCyAAGnhG-Mcbo8365.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆江蘇睢寧市數學高二上期末檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“,則”及其逆命題、否命題和逆否命題這四個命題中,真命題的個數為()A.0 B.2C.3 D.42.直線在軸上的截距為,在軸上的截距為,則有()A., B.,C., D.,3.拋物線的焦點到其準線的距離是()A.4 B.3C.2 D.14.已知拋物線上的點到該拋物線焦點的距離為,則拋物線的方程是()A. B.C. D.5.在中,B=30°,BC=2,AB=,則邊AC的長等于()A. B.1C. D.26.函數極小值為()A. B.C. D.7.執(zhí)行如圖所示的程序框圖,如果輸入,那么輸出的a值為()A.3 B.27C.-9 D.98.已知圓的半徑為,平面上一定點到圓心的距離,是圓上任意一點.線段的垂直平分線和直線相交于點,設點在圓上運動時,點的軌跡為,當時,軌跡對應曲線的離心率取值范圍為()A. B.C. D.9.已知拋物線,則它的焦點坐標為()A. B.C. D.10.關于實數a,b,c,下列說法正確的是()A.如果,則,,成等差數列B.如果,則,,成等比數列C.如果,則,,成等差數列D.如果,則,,成等差數列11.已知函數在上單調遞減,則實數的取值范圍是()A. B.C. D.12.拋物線上點的橫坐標為4,則到拋物線焦點的距離等于()A.12 B.10C.8 D.6二、填空題:本題共4小題,每小題5分,共20分。13.在正方體中,,,P,F分別是線段,的中點,則點P到直線EF的距離是___________.14.如圖,四棱錐的底面是正方形,底面,為的中點,若,則點到平面的距離為___________.15.希臘著名數學家阿波羅尼斯與歐幾里得、阿基米德齊名.他發(fā)現:“平面內到兩個定點A,B的距離之比為定值λ(λ≠1)的點的軌跡是圓”.后來,人們將這個圓以他的名字命名,稱為阿波羅尼斯圓,簡稱阿氏圓.已知在平面直角坐標系xOy中,A(-2,1),B(-2,4),點P是滿足的阿氏圓上的任一點,則該阿氏圓的方程為___________________;若點Q為拋物線E:y2=4x上的動點,Q在直線x=-1上的射影為H,則的最小值為___________.16.已知數列{an}滿足an+2=an+1-an(n∈N*),且a1=2,a2=3,則a2022的值為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設p:關于x的不等式有解,q:.(1)若p為真命題,求實數m的取值范圍;(2)若為假命題,為真命題,求實數m的取值范圍.18.(12分)已知直線l經過兩條直線2x﹣y﹣3=0和4x﹣3y﹣5=0交點,且與直線x+y﹣2=0垂直(1)求直線l的方程;(2)若圓C過點(1,0),且圓心在x軸的正半軸上,直線l被該圓所截得的弦長為,求圓C的標準方程19.(12分)已知等差數列公差不為0,且成等比數列.(1)求數列的通項公式及其前n項和;(2)記,求數列的前n項和.20.(12分)著名的“康托爾三分集”是由德國數學家康托爾構造的,是人類理性思維的產物,其操作過程如下:將閉區(qū)間均分為三段,去掉中間的區(qū)間段記為第一次操作;再將剩下的兩個閉區(qū)間,分別均分為三段,并各自去掉中間的區(qū)間段,記為第二次操作;…,如此這樣,每次在上一次操作的基礎上,將剩下的各個區(qū)間分別均分為三段,同樣各自去掉中間的區(qū)間段.操作過程不斷地進行下去,以至無窮.每次操作后剩下的閉區(qū)間構成的集合即是“康托爾三分集”.例如第一次操作后的“康托爾三分集”為.(1)求第二次操作后的“康托爾三分集”;(2)定義的區(qū)間長度為,記第n次操作后剩余的各區(qū)間長度和為,求;(3)記n次操作后“康托爾三分集”的區(qū)間長度總和為,若使不大于原來的,求n的最小值.(參考數據:,)21.(12分)已知定點,圓:,點Q為圓上動點,線段MQ的垂直平分線交NQ于點P,記P的軌跡為曲線C(1)求曲線C的方程;(2)過點M與N作平行直線和,分別交曲線C于點A,B和點D,E,求四邊形ABDE面積的最大值22.(10分)已知函數(Ⅰ)討論函數的極值點的個數(Ⅱ)若,,求的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】首先判斷原命題的真假,寫出其逆命題,即可判斷其真假,再根據互為逆否命題的兩個命題同真假,即可判斷;【詳解】解:因為命題“,則”為真命題,所以其逆否命題也為真命題;其逆命題為:則,顯然也為真命題,故其否命題也為真命題;故命題“,則”及其逆命題、否命題和逆否命題這四個命題中,真命題有4個;故選:D2、B【解析】將直線方程的一般形式化為截距式,由此可得其在x軸和y軸上的截距.【詳解】直線方程化成截距式為,所以,故選:B.3、C【解析】由拋物線焦點到準線的距離為求解即可.【詳解】因為拋物線焦點到準線的距離為,故拋物線的焦點到其準線的距離是2.故選:C【點睛】本題主要考查了拋物線的標準方程中的幾何意義,屬于基礎題型.4、B【解析】由拋物線知識得出準線方程,再由點到焦點的距離等于其到準線的距離求出,從而得出方程.【詳解】由題意知,則準線為,點到焦點的距離等于其到準線的距離,即,∴,則故選:B.5、B【解析】利用余弦定理即得【詳解】由余弦定理,得,解得AC=1故選:B.6、A【解析】利用導數分析函數的單調性,可求得該函數的極小值.【詳解】對函數求導得,令,可得或,列表如下:減極小值增極大值減所以,函數的極小值為.故選:A.7、B【解析】分析程序中各變量、各語句的作用,再根據流程圖所示的順序,可知:該程序的作用是利用循環(huán)累乘值,并判斷滿足時輸出的值【詳解】解:模擬執(zhí)行程序框圖,可得,時,不滿足條件,;不滿足條件,;不滿足條件,;滿足條件,退出循環(huán),輸出的值為27故選:8、D【解析】分點A在圓內,圓外兩種情況,根據中垂線的性質,結合橢圓、雙曲線的定義可判斷軌跡,再由離心率計算即可求解.【詳解】當A在圓內時,如圖,,所以的軌跡是以O,A為焦點的橢圓,其中,,此時,,.當A在圓外時,如圖,因為,所以軌跡是以O,A為焦點的雙曲線,其中,,此時,,.綜上可知,.故選:D9、D【解析】將拋物線方程化標準形式后得到焦準距,可得結果.【詳解】由得,所以,所以,所以拋物線的焦點坐標為.故選:D.【點睛】關鍵點點睛:將拋物線方程化為標準形式是解題關鍵.10、B【解析】根據給定條件結合取特值、推理計算等方法逐一分析各個選項并判斷即可作答.【詳解】對于A,若,取,而,即,,不成等差數列,A不正確;對于B,若,則,即,,成等比數列,B正確;對于C,若,取,而,,,不成等差數列,C不正確;對于D,a,b,c是實數,若,顯然都可以為負數或者0,此時a,b,c無對數,D不正確.故選:B11、A【解析】由題意,在上恒成立,只需滿足即可求解.【詳解】解:因為,所以,因為函數在上單調遞減,所以在上恒成立,只需滿足,即,解得故選:A.12、C【解析】根據焦半徑公式即可求出【詳解】因為,所以,所以故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】以A為坐標原點建立空間直角坐標系,利用向量法即可求解點P到直線EF的距離.【詳解】解:如圖,以A為坐標原點,,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,因為,所以,,,所以,,所以點P到直線EF的距離.故答案為:.14、【解析】以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得點到平面的距離.【詳解】因為底面,,以點為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,則、、、,設平面的法向量為,,,則,取,可得,,所以,點到平面的距離為.故答案為:.15、①.②.【解析】(1)利用直譯法直接求出P點的軌跡(2)先利用阿氏圓的定義將轉化為P點到另一個定點的距離,然后結合拋物線的定義容易求得的最小值【詳解】設P(x,y),由阿氏圓的定義可得即化簡得則設則由拋物線的定義可得當且僅當四點共線時取等號,的最小值為故答案為:【點睛】本題考查了拋物線的定義及幾何性質,同時考查了阿氏圓定義的應用.還考查了學生利用轉化思想、方程思想等思想方法解題的能力.難度較大16、【解析】根據遞推關系求出數列的前幾項,得周期性,然后可得結論【詳解】由題意,,,,,,所以數列是周期數列,周期為6,所以故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】根據題意,解出p和q里面m的范圍即可求解﹒其中有解,則≥0﹒【小問1詳解】p為真命題時,,解得,所以m的取值范圍是;【小問2詳解】q為真命題時,即,解得,所以q為假命題時,或,由(1)知,p為假時,因為為假命題,為真命題,所以p,q為一真一假,當p真q假時,且“或”,解得;當p假q真時,,解得;綜上:m的取值范圍是18、(1)(2)【解析】(1)先求得直線和直線的交點坐標,再用點斜式求得直線的方程.(2)設圓的標準方程為,根據已知條件列方程組,求得,由此求得圓的標準方程.【小問1詳解】.直線的斜率為,所以直線的斜率為,所以直線的方程為.【小問2詳解】設圓的標準方程為,則,所以圓的標準方程為.19、(1),(2)【解析】(1)根據分式的合分比性質以及等差數列的性質即可求出;(2)根據裂項相消法即可求出【小問1詳解】由題意:,即,又∵,∴,∴,∴,.【小問2詳解】因為,∴.20、(1)(2)(3)【解析】(1)根據“康托爾三分集”的定義,即可求得第二次操作后的“康托爾三分集”;(2)根據“康托爾三分集”的定義,分別求得前幾次的剩余區(qū)間長度的和,求得其通項公式,即可求解;(3)由(2)可得第次操作剩余區(qū)間的長度和為,結合題意,得到,利用對數的運算公式,即可求解.【小問1詳解】解:根據“康托爾三分集”的定義可得:第一次操作后的“康托爾三分集”為,第二次操作后的“康托爾三分集”為;【小問2詳解】解:將定義的區(qū)間長度為,根據“康托爾三分集”的定義可得:每次去掉的區(qū)間長后組成的數為以為首項,為公比的等比數列,第1次操作去掉的區(qū)間長為,剩余區(qū)間的長度和為,第2次操作去掉兩個區(qū)間長為的區(qū)間,剩余區(qū)間的長度和為,第3次操作去掉四個區(qū)間長為的區(qū)間,剩余區(qū)間的長度和為,第4次操作去掉個區(qū)間長為,剩余區(qū)間的長度和為,第次操作去掉個區(qū)間長為,剩余區(qū)間的長度和為,所以第次操作后剩余的各區(qū)間長度和為;【小問3詳解】解:設定義區(qū)間,則區(qū)間長度為1,由(2)可得第次操作剩余區(qū)間的長度和為,要使得“康托三分集”的各區(qū)間的長度之和不大于,則滿足,即,即,因為為整數,所以的最小值為.21、(1)(2)6【解析】(1)由橢圓的定義求解(2)設直線方程后與橢圓方程聯立,由韋達定理表示弦長,將面積轉化為函數后求求解【小問1詳解】由題意可得,所以動點P的軌跡是以M,N為焦點,長軸長為4的橢圓,即曲線C的方程為:;【小問2詳解】由題意可設的方程為,聯立方程得,設,,則由根與系數關系有,所以,根據橢圓的對稱性可得,與的距離即為點M到直線的距離,為,所以四邊形ABDE面積為,令得,由對勾函數性質可知:當且僅當,即時,四邊形ABDE面積取得最大值為6.22、(Ⅰ)答案見解析;(Ⅱ).【解析】(Ⅰ)求得,分,和三種情況討論,求得函數的單調性,結合極值的概念,即可求解;(Ⅱ)由不等式,轉化為當時,不等式恒成立,設,利用導數求得函數的單調性與最值,即可求解.【詳解】(Ⅰ)由題意,函數的定義域為,且,當時,令,解得,令,解得或,故在上單調遞減,在,上單調遞增,所以有一個極值點;當時,令,解得或,令,得,故在,上單調遞減,在上單調遞增,所以有一個極值點;當時,上單調遞增,在上單調遞減,所以沒有極值點綜上
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國閃蒸干燥器行業(yè)投資前景及策略咨詢研究報告
- 2025至2031年中國記憶型條碼掃描器行業(yè)投資前景及策略咨詢研究報告
- 2025年硅膠自熄管項目可行性研究報告
- 2025年爽滑抗粘連母料項目可行性研究報告
- 2025至2031年中國潔白牙膏行業(yè)投資前景及策略咨詢研究報告
- 2025年旋轉式變阻器項目可行性研究報告
- 2025年強化安全轉化器項目可行性研究報告
- 2025年地刮項目可行性研究報告
- 2025至2031年中國交聯聚乙烯絕緣輕型架空電纜行業(yè)投資前景及策略咨詢研究報告
- 2025年倉壁振動器項目可行性研究報告
- 2024年《動漫藝術概論》自考復習題庫(附答案)
- 2024年職業(yè)技能“大數據考試”專業(yè)技術人員繼續(xù)教育考試題庫與答案
- 新時代勞動教育教程(高校勞動教育課程)全套教學課件
- 慢病報卡系統使用流程圖
- 2024年遼寧軌道交通職業(yè)學院單招職業(yè)適應性測試題庫含答案
- 小升初數學總復習專題訓練:平行四邊形的面積與梯形的面積
- 物業(yè)安全開工第一課課件
- 化工設計自動控制方案
- 幼兒園幼小銜接考試試題一
- 天津事業(yè)單位筆試試題2024
- 《化妝品穩(wěn)定性試驗規(guī)范》
評論
0/150
提交評論