貴州省銅仁一中2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第1頁
貴州省銅仁一中2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第2頁
貴州省銅仁一中2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第3頁
貴州省銅仁一中2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第4頁
貴州省銅仁一中2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

貴州省銅仁一中2025屆高二數(shù)學第一學期期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.過點且斜率為的直線方程為()A. B.C D.2.已知定義在R上的函數(shù)滿足,且有,則的解集為()A B.C. D.3.若曲線的一條切線與直線垂直,則的方程為()A. B.C. D.4.已知O為坐標原點,=(1,2,3),=(2,1,2),=(1,1,2),點Q在直線OP上運動,則當取得最小值時,點Q的坐標為()A. B.C. D.5.在中,角,,所對的邊分別為,,,若,,,則A. B.2C.3 D.6.已知命題:,;命題:在中,若,則,則下列命題為真命題的是()A. B.C. D.7.在棱長均為1的平行六面體中,,則()A. B.3C. D.68.對于圓上任意一點的值與x,y無關(guān),有下列結(jié)論:①當時,r有最大值1;②在r取最大值時,則點的軌跡是一條直線;③當時,則.其中正確的個數(shù)是()A.3 B.2C.1 D.09.圓與圓的位置關(guān)系為()A.外切 B.內(nèi)切C.相交 D.相離10.從直線上動點作圓的兩條切線,切點分別為、,則最大時,四邊形(為坐標原點)面積是()A. B.C. D.11.已知雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,則雙曲線的標準方程為()A.=1 B.=1C.=1 D.=112.已知命題:△中,若,則;命題:函數(shù),,則的最大值為.則下列命題是真命題的是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知球面上的三點A,B,C滿足,,,球心到平面ABC的距離為,則球的表面積為______14.雙曲線的焦距為____________15.歷史上第一個研究圓錐曲線的是梅納庫莫斯(公元前375年—325年),大約100年后,阿波羅尼奧更詳盡、系統(tǒng)地研究了圓錐曲線,并且他還進一步研究了這些圓錐曲線的光學性質(zhì),比如:從拋物線的焦點發(fā)出的光線或聲波在經(jīng)過拋物線反射后,反射光線平行于拋物線的對稱軸:反之,平行于拋物線對稱軸的光線,經(jīng)拋物線反射后,反射光線經(jīng)過拋物線的焦點.已知拋物線,經(jīng)過點一束平行于C對稱軸的光線,經(jīng)C上點P反射后交C于點Q,則PQ的長度為______.16.已知函數(shù),則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知四邊形是空間直角坐標系中的一個平行四邊形,且,,(1)求點的坐標;(2)求平行四邊形的面積18.(12分)已知函數(shù)的圖象在點處的切線與直線平行(是自然對數(shù)的底數(shù)).(1)求的值;(2)若在上恒成立,求實數(shù)的取值范圍.19.(12分)如圖,點分別在射線,上運動,且(1)求;(2)求線段的中點M的軌跡C的方程;(3)直線與,軌跡C及自上而下依次交于D,E,F(xiàn),G四點,求證:20.(12分)已知是等差數(shù)列,,.(1)求的通項公式;(2)若數(shù)列是公比為的等比數(shù)列,,求數(shù)列的前項和.21.(12分)如圖,P為圓上一動點,點A坐標為,線段AP的垂直平分線交直線BP于點Q(1)求點Q的軌跡E的方程;(2)過點A的直線l交E于C,D兩點,若△BCD內(nèi)切圓的半徑為,求直線l的方程.22.(10分)已知等差數(shù)列的公差,前3項和,且成等比數(shù)列.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用點斜式可得出所求直線的方程.【詳解】由題意可知所求直線的方程為,即.故選:B.2、A【解析】構(gòu)造,應用導數(shù)及已知條件判斷的單調(diào)性,而題設不等式等價于即可得解.【詳解】設,則,∴在R上單調(diào)遞增.又,則.∵等價于,即,∴,即所求不等式的解集為.故選:A3、A【解析】兩直線垂直,斜率之積為,曲線與直線相切,聯(lián)立方程令.【詳解】法一:直線,所以,所以切線的,設切線的方程為,聯(lián)立方程,所以,令,解得,所以切線方程為.法二:直線,所以,所以切線的,,所以令,所以,帶入曲線方程得切點坐標為,所以切線方程為,化簡得.故選:A.4、C【解析】設,用表示出,求得的表達式,結(jié)合二次函數(shù)的性質(zhì)求得當時,取得最小值,從而求得點的坐標.【詳解】設,則=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以當λ=時,取得最小值,此時==,即點Q的坐標為.故選:C5、A【解析】利用正弦定理,可直接求出的值.【詳解】在中,由正弦定理得,所以,故選A.【點睛】本題考查利用正弦定理求邊,要記得正弦定理所適用的基本類型,考查計算能力,屬于基礎題6、C【解析】分別求得的真假性,從而確定正確答案.【詳解】對于,由于,所以為假命題,為真命題.對于,在三角形中,,由正弦定理得,所以為真命題,為假命題.所以為真命題,、、為假命題.故選:C7、C【解析】設,,,利用結(jié)合數(shù)量積的運算即可得到答案.【詳解】設,,,由已知,得,,,,所以,所以.故選:C8、B【解析】可以看作點到直線與直線距離之和的倍,的取值與,無關(guān),這個距離之和與點在圓上的位置無關(guān),圓在兩直線內(nèi)部,則,的距離為,則,,對于①,當時,r有最大值1,得出結(jié)論;對于②在r取最大值時,則點的軌跡是一條平行與,的直線,得出結(jié)論;對于③當時,則得出結(jié)論.【詳解】設,故可以看作點到直線與直線距離之和的倍,的取值與,無關(guān),這個距離之和與點在圓上的位置無關(guān),可知直線平移時,點與直線,的距離之和均為,的距離,即此時圓在兩直線內(nèi)部,,的距離為,則,對于①,當時,r有最大值1,正確;對于②在r取最大值時,則點的軌跡是一條平行與,的直線,正確;對于③當時,則即,解得或,故錯誤.故正確結(jié)論有2個,故選:B.9、A【解析】根據(jù)兩圓半徑和、差、圓心距之間的大小關(guān)系進行判斷即可.【詳解】由,該圓的圓心為,半徑為.圓圓心為,半徑為,因為兩圓的圓心距為,兩圓的半徑和為,所以兩圓的半徑和等于兩圓的圓心距,因此兩圓相外切,故選:A10、B【解析】分析可知當時,最大,計算出、,進而可計算得出四邊形(為坐標原點)面積.【詳解】圓的圓心為坐標原點,連接、、,則,設,則,,則,當取最小值時,,此時,,,,故,此時,.故選:B.11、D【解析】根據(jù)雙曲線的性質(zhì)求解即可.【詳解】雙曲線的焦點在y軸上,且實半軸長為4,虛半軸長為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.12、A【解析】由三角形內(nèi)角及正弦函數(shù)的性質(zhì)判斷、的真假,應用換元法令,結(jié)合對勾函數(shù)的性質(zhì)確定的值域即知、的真假,根據(jù)各選項復合命題判斷真假即可.【詳解】由且,可得或,故為假命題,為真命題;令,又,則,故,∵在上遞減,∴,故的最大值為.∴為真命題,為假命題;∴為真,為假,為假,為假.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題意可知為直角三角形,求出外接圓的半徑,可求出球的半徑,然后求球的表面積.【詳解】由題意,,,,則,可知,所以外接圓的半徑為,因為球心到平面的距離為,所以球的半徑為:,所以球的表面積為:.故答案為:.14、【解析】根據(jù)雙曲線的方程求出,再求焦距的值.【詳解】因為雙曲線方程為,所以,.雙曲線的焦距為.故答案為:.15、####【解析】根據(jù)題意,求得點以及拋物線焦點的坐標,即可求得所在直線方程,聯(lián)立其與拋物線方程,求得點的坐標,即可求得.【詳解】因為經(jīng)過點一束平行于C對稱軸的光線交拋物線于點,故對,令,則可得,也即的坐標為,又拋物線的焦點的坐標為,故可得直線方程為,聯(lián)立拋物線方程可得:,,解得或,將代入,可得,即的坐標為,則.故答案為:.16、【解析】根據(jù)導數(shù)的定義求解即可【詳解】由,得,所以,故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)由題設可得,結(jié)合向量的共線坐標表示求的坐標;(2)向量的坐標運算求邊長,由余弦定理求,進而求其正弦值,再應用三角形面積公式求面積.【小問1詳解】由題設,,令,則,∴,可得,故.【小問2詳解】由(1),,,則,又,則,∴平行四邊形的面積.18、(1)(2)【解析】(1)求出函數(shù)的導函數(shù),根據(jù)題意結(jié)合導數(shù)的幾何意義列出方程,解之即可得解;(2)在上恒成立,即在上恒成立,從而,令,利用導數(shù)求出函數(shù)的最小值,即可求得實數(shù)的取值范圍【小問1詳解】解:,因為函數(shù)的圖象在點處的切線與直線平行,所以,解得;【小問2詳解】解:在上恒成立,即在上恒成立,,,令,則,當時,;當時,,函數(shù)在上單調(diào)遞減,有上單調(diào)遞增,,,即實數(shù)的取值范圍是19、(1)2(2)(3)證明見詳解【解析】(1)用兩點間的距離公式和三角形的面積公式,結(jié)合已知直接可解;(2)根據(jù)中點坐標公式,結(jié)合(1)中結(jié)論可得;(3)要證,只需證和的中點重合,直接或利用韋達定理求出中點橫坐標,證明其相等即可.【小問1詳解】記直線的傾斜角為,則,易得所以因為,所以,整理得:【小問2詳解】設點M的坐標為,則即,由(1)知,所以,即【小問3詳解】要證,只需證和的中點重合,記D,E,F(xiàn),G的橫坐標分別為,易知直線的斜率(當時與漸近線平行或重合,此時與雙曲線最多一個交點)則解方程組,得解方程組,得將代入,得所以因為所以所以和的中點的橫坐標相等,所以和的中點重合,記其中點為N,則有,即20、(1)(2)【解析】(1)由題意得解方程組求出,從而可求出數(shù)列的通項公式,(2)因為是公比為的等比數(shù)列,又,,所以,從而可得,然后利用分組求和法求解即可【小問1詳解】設等差數(shù)列的公差為.由題意得解得,.所以.【小問2詳解】因為是公比為的等比數(shù)列,又,,所以,所以.所以.21、(1)(2)【解析】(1)連接,由,利用橢圓的定義求解;(2)設點,,直線的方程為,與橢圓聯(lián)立,結(jié)合韋達定理,利用等面積法求解.【小問1詳解】解:連接,由題意知:,,即的軌跡為橢圓,其中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論