2025屆廣東省深圳市龍文教育高三數(shù)學(xué)第一學(xué)期期末考試試題含解析_第1頁
2025屆廣東省深圳市龍文教育高三數(shù)學(xué)第一學(xué)期期末考試試題含解析_第2頁
2025屆廣東省深圳市龍文教育高三數(shù)學(xué)第一學(xué)期期末考試試題含解析_第3頁
2025屆廣東省深圳市龍文教育高三數(shù)學(xué)第一學(xué)期期末考試試題含解析_第4頁
2025屆廣東省深圳市龍文教育高三數(shù)學(xué)第一學(xué)期期末考試試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆廣東省深圳市龍文教育高三數(shù)學(xué)第一學(xué)期期末考試試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面向量滿足與的夾角為,且,則實數(shù)的值為()A. B. C. D.2.已知復(fù)數(shù)滿足,則()A. B. C. D.3.設(shè)全集,集合,,則()A. B. C. D.4.已知全集,集合,,則()A. B. C. D.5.設(shè)集合,,若集合中有且僅有2個元素,則實數(shù)的取值范圍為A. B.C. D.6.已知復(fù)數(shù)z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.8.已知復(fù)數(shù)滿足:(為虛數(shù)單位),則()A. B. C. D.9.已知雙曲線的右焦點為,過的直線交雙曲線的漸近線于兩點,且直線的傾斜角是漸近線傾斜角的2倍,若,則該雙曲線的離心率為()A. B. C. D.10.已知雙曲線的兩條漸近線與拋物線的準線分別交于點、,O為坐標原點.若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.311.在四面體中,為正三角形,邊長為6,,,,則四面體的體積為()A. B. C.24 D.12.一個正三角形的三個頂點都在雙曲線的右支上,且其中一個頂點在雙曲線的右頂點,則實數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若復(fù)數(shù)z滿足,其中i是虛數(shù)單位,則z的模是______.14.在平面五邊形中,,,,且.將五邊形沿對角線折起,使平面與平面所成的二面角為,則沿對角線折起后所得幾何體的外接球的表面積是______.15.如圖,在體積為V的圓柱中,以線段上的點O為項點,上下底面為底面的兩個圓錐的體積分別為,,則的值是______.16.在等差數(shù)列()中,若,,則的值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(Ⅰ)求的值;(Ⅱ)若,且,求的值.18.(12分)設(shè)拋物線的焦點為,準線為,為過焦點且垂直于軸的拋物線的弦,已知以為直徑的圓經(jīng)過點.(1)求的值及該圓的方程;(2)設(shè)為上任意一點,過點作的切線,切點為,證明:.19.(12分)如圖,在直角梯形中,,,,為的中點,沿將折起,使得點到點位置,且,為的中點,是上的動點(與點,不重合).(Ⅰ)證明:平面平面垂直;(Ⅱ)是否存在點,使得二面角的余弦值?若存在,確定點位置;若不存在,說明理由.20.(12分)已知數(shù)列和,前項和為,且,是各項均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.21.(12分)已知函數(shù),.(1)求的值;(2)令在上最小值為,證明:.22.(10分)的內(nèi)角A,B,C的對邊分別為a,b,c,已知,.求C;若,求,的面積

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由已知可得,結(jié)合向量數(shù)量積的運算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點睛】本題考查向量的數(shù)量積運算,向量垂直的應(yīng)用,考查計算求解能力,屬于基礎(chǔ)題.2、A【解析】

由復(fù)數(shù)的運算法則計算.【詳解】因為,所以故選:A.【點睛】本題考查復(fù)數(shù)的運算.屬于簡單題.3、D【解析】

求解不等式,得到集合A,B,利用交集、補集運算即得解【詳解】由于故集合或故集合故選:D【點睛】本題考查了集合的交集和補集混合運算,考查了學(xué)生概念理解,數(shù)學(xué)運算的能力,屬于中檔題.4、B【解析】

直接利用集合的基本運算求解即可.【詳解】解:全集,集合,,則,故選:.【點睛】本題考查集合的基本運算,屬于基礎(chǔ)題.5、B【解析】

由題意知且,結(jié)合數(shù)軸即可求得的取值范圍.【詳解】由題意知,,則,故,又,則,所以,所以本題答案為B.【點睛】本題主要考查了集合的關(guān)系及運算,以及借助數(shù)軸解決有關(guān)問題,其中確定中的元素是解題的關(guān)鍵,屬于基礎(chǔ)題.6、C【解析】分析:根據(jù)復(fù)數(shù)的運算,求得復(fù)數(shù)z,再利用復(fù)數(shù)的表示,即可得到復(fù)數(shù)對應(yīng)的點,得到答案.詳解:由題意,復(fù)數(shù)z=2i1-i所以復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點的坐標為(-1,-1),位于復(fù)平面內(nèi)的第三象限,故選C.點睛:本題主要考查了復(fù)數(shù)的四則運算及復(fù)數(shù)的表示,其中根據(jù)復(fù)數(shù)的四則運算求解復(fù)數(shù)z是解答的關(guān)鍵,著重考查了推理與運算能力.7、C【解析】

由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時雙曲線,則曲線的離心率為,故選C.【點睛】本題主要考查了雙曲線的標準方程及其簡單的幾何性質(zhì)的應(yīng)用,其中解答中熟記雙曲線的幾何性質(zhì),準確運算是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.8、A【解析】

利用復(fù)數(shù)的乘法、除法運算求出,再根據(jù)共軛復(fù)數(shù)的概念即可求解.【詳解】由,則,所以.故選:A【點睛】本題考查了復(fù)數(shù)的四則運算、共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.9、B【解析】

先求出直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得A,B的縱坐標,利用,求出a,b的關(guān)系,即可求出該雙曲線的離心率.【詳解】雙曲線1(a>b>0)的漸近線方程為y=±x,∵直線l的傾斜角是漸近線OA傾斜角的2倍,∴kl,∴直線l的方程為y(x﹣c),與y=±x聯(lián)立,可得y或y,∵,∴2?,∴ab,∴c=2b,∴e.故選B.【點睛】本題考查雙曲線的簡單性質(zhì),考查向量知識,考查學(xué)生的計算能力,屬于中檔題.10、C【解析】試題分析:拋物線的準線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點,,,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準線方程;11、A【解析】

推導(dǎo)出,分別取的中點,連結(jié),則,推導(dǎo)出,從而,進而四面體的體積為,由此能求出結(jié)果.【詳解】解:在四面體中,為等邊三角形,邊長為6,,,,,,分別取的中點,連結(jié),則,且,,,,平面,平面,,四面體的體積為:.故答案為:.【點睛】本題考查四面體體積的求法,考查空間中線線,線面,面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力.12、D【解析】

因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線可解得.【詳解】因為雙曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點坐標為,,將其代入雙曲線方程得:,即,由得.故選:.【點睛】本題考查了雙曲線的性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先求得復(fù)數(shù),再由復(fù)數(shù)模的計算公式即得.【詳解】,,則.故答案為:【點睛】本題考查復(fù)數(shù)的四則運算和求復(fù)數(shù)的模,是基礎(chǔ)題.14、【解析】

設(shè)的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,得到直線與的交點為幾何體外接球的球心,結(jié)合三角形的性質(zhì),求得球的半徑,利用表面積公式,即可求解.【詳解】設(shè)的中心為,矩形的中心為,過作垂直于平面的直線,過作垂直于平面的直線,則由球的性質(zhì)可知,直線與的交點為幾何體外接球的球心,取的中點,連接,,由條件得,,連接,因為,從而,連接,則為所得幾何體外接球的半徑,在直角中,由,,可得,即外接球的半徑為,故所得幾何體外接球的表面積為.故答案為:.【點睛】本題主要考查了空間幾何體的結(jié)構(gòu)特征,以及多面體的外接球的表面積的計算,其中解答中熟記空間幾何體的結(jié)構(gòu)特征,求得外接球的半徑是解答的關(guān)鍵,著重考查了空間想象能力與運算求解能力,屬于中檔試題.15、【解析】

根據(jù)圓柱的體積為,以及圓錐的體積公式,計算即得.【詳解】由題得,,得.故答案為:【點睛】本題主要考查圓錐體的體積,是基礎(chǔ)題.16、-15【解析】

是等差數(shù)列,則有,可得的值,再由可得,計算即得.【詳解】數(shù)列是等差數(shù)列,,又,,,故.故答案為:【點睛】本題考查等差數(shù)列的性質(zhì),也可以由已知條件求出和公差,再計算.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)直接代入再由誘導(dǎo)公式計算可得;(Ⅱ)先得到,再根據(jù)利用兩角差的余弦公式計算可得.【詳解】解:(Ⅰ);(Ⅱ)因為所以,由得,又因為,故,所以,所以.【點睛】本題考查了三角函數(shù)中的恒等變換應(yīng)用,屬于中檔題.18、(1),圓的方程為:.(2)答案見解析【解析】

(1)根據(jù)題意,可知點的坐標為,即可求出的值,即可求出該圓的方程;(2)由題易知,直線的斜率存在且不為0,設(shè)的方程為,與拋物線聯(lián)立方程組,根據(jù),求得,化簡解得,進而求得點的坐標為,分別求出,,利用向量的數(shù)量積為0,即可證出.【詳解】解:(1)易知點的坐標為,所以,解得.又圓的圓心為,所以圓的方程為.(2)證明易知,直線的斜率存在且不為0,設(shè)的方程為,代入的方程,得.令,得,所以,解得.將代入的方程,得,即點的坐標為.所以,,.故.【點睛】本題考查拋物線的標準方程和圓的方程,考查直線和拋物線的位置關(guān)系,利用聯(lián)立方程組、求交點坐標以及向量的數(shù)量積,考查解題能力和計算能力.19、(Ⅰ)見解析(Ⅱ)存在,此時為的中點.【解析】

(Ⅰ)證明平面,得到平面平面,故平面平面,平面,得到答案.(Ⅱ)假設(shè)存在點滿足題意,過作于,平面,過作于,連接,則,過作于,連接,是二面角的平面角,設(shè),,計算得到答案.【詳解】(Ⅰ)∵,,,∴平面.又平面,∴平面平面,而平面,,∴平面平面,由,知,可知平面,又平面,∴平面平面.(Ⅱ)假設(shè)存在點滿足題意,過作于,由知,易證平面,所以平面,過作于,連接,則(三垂線定理),即是二面角的平面角,不妨設(shè),則,在中,設(shè)(),由得,即,得,∴,依題意知,即,解得,此時為的中點.綜上知,存在點,使得二面角的余弦值,此時為的中點.【點睛】本題考查了面面垂直,根據(jù)二面角確定點的位置,意在考查學(xué)生的空間想象能力和計算能力,也可以建立空間直角坐標系解得答案.20、(1),;(2).【解析】

(1)令求出的值,然后由,得出,然后檢驗是否符合在時的表達式,即可得出數(shù)列的通項公式,并設(shè)數(shù)列的公比為,根據(jù)題意列出和的方程組,解出這兩個量,然后利用等比數(shù)列的通項公式可求出;(2)求出數(shù)列的前項和,然后利用分組求和法可求出.【詳解】(1)當(dāng)時,,當(dāng)時,.也適合上式,所以,.設(shè)數(shù)列的公比為,則,由,兩式相除得,,解得,,;(2)設(shè)數(shù)列的前項和為,則,.【點睛】本題考查利用求,同時也考查了等比數(shù)列通項的計算,以及分組求和法的應(yīng)用,考查計算能力,屬于中等題.21、(1);(2)見解析.【解析】

(1)將轉(zhuǎn)化為對任意恒成立,令,故只需,即可求出的值;(2)由(1)知,可得,令,可證,使得,從而可確定在上單調(diào)遞減,在上單調(diào)遞增,進而可得,即,即可證出.【詳解】函數(shù)的定義域為,因為對任意恒成立,即對任意恒成立,令,則,當(dāng)時,,故在上單調(diào)遞增,又,所以當(dāng)時,,不符合題意;當(dāng)時,令得,當(dāng)時,;當(dāng)時,,所以在上單調(diào)遞增,在上單調(diào)遞減,所以,所以要使在時恒成立,則只需,即,令,,所以,當(dāng)時,;當(dāng)時,,所以在單調(diào)遞減,在上單調(diào)遞增,所以,即,又,所以,故滿足條件的的值只有(2)由(1)知,所以,令,則,當(dāng),時,即在上單調(diào)遞增;又,,所以,使得,當(dāng)時,;當(dāng)時,,即在上單調(diào)遞減,在上單調(diào)遞增,且所以,即,所以,即.【點睛】本題主要考查利用導(dǎo)數(shù)法求函數(shù)的最值及恒成立問題處理方法,第(2)問通過最值問題深化對函數(shù)的單調(diào)性的考查,同時考查轉(zhuǎn)化與化歸的思想,屬于中檔題.22、(1).(2).【解析】

由已知利用正弦定理,同角三角函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論