版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆江西省五市八校協(xié)作體數(shù)學高一上期末教學質(zhì)量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖,在正方體中,分別為的中點,則異面直線與所成的角等于A. B.C. D.2.三個數(shù)的大小關(guān)系為()A. B.C. D.3.已知過點和的直線與斜率為一2的直線平行,則m的值是A.-8 B.0C.2 D.104.已知全集,集合,,則()A. B.C. D.5.如果AB>0,BC>0,那么直線Ax-By-C=0不經(jīng)過的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限6.已知函數(shù),若方程有三個不同的實數(shù)根,則實數(shù)的取值范圍是A. B.C. D.7.冪函數(shù)的圖象經(jīng)過點,則()A.是偶函數(shù),且在上單調(diào)遞增B.是偶函數(shù),且在上單調(diào)遞減C.是奇函數(shù),且在上單調(diào)遞減D.既不是奇函數(shù),也不是偶函數(shù),在上單調(diào)遞增8.在長為12cm的線段AB上任取一點C.現(xiàn)作一矩形,鄰邊長分別等于線段AC,CB的長,則該矩形面積大于20cm2的概率為A. B.C. D.9.函數(shù)的定義城為()A B.C. D.10.若是圓的弦,的中點是(-1,2),則直線的方程是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)有兩個零點分別為a,b,則的取值范圍是_____________12.設(shè)函數(shù),若互不相等的實數(shù)、、滿足,則的取值范圍是_________13.已知函數(shù)在區(qū)間,上恒有則實數(shù)的取值范圍是_____.14.已知,,則函數(shù)的值域為______15.在中,若,則的形狀一定是___________三角形.16.已知圓及直線,當直線被圓截得的弦長為時,的值等于________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某同學用“五點法”畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:00200(1)請將上表數(shù)據(jù)補充完整;函數(shù)解析式為=(直接寫出結(jié)果即可);(2)求函數(shù)的單調(diào)遞增區(qū)間;(3)求函數(shù)在區(qū)間上的最大值和最小值18.如圖,已知等腰梯形中,,,是的中點,,將沿著翻折成,使平面平面.(1)求證:平面;(2)求與平面所成的角;(3)在線段上是否存在點,使得平面,若存在,求出的值;若不存在,說明理由.19.已知函數(shù)的定義域為R,其圖像關(guān)于原點對稱,且當時,(1)請補全函數(shù)的圖像,并由圖像寫出函數(shù)在R上的單調(diào)遞減區(qū)間;(2)若,,求的值20.已知二次函數(shù).若當時,的最大值為4,求實數(shù)的值.21.在①;②“”是“”的充分條件:③“”是“”的必要條件,在這三個條件中任選一個,補充到本題第(2)問的橫線處,求解下列問題問題:已知集合,(1)當時,求;(2)若________,求實數(shù)的取值范圍注:如果選擇多個條件分別解答,按第一個解答計分
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】取的中點,則由三角形的中位線的性質(zhì)可得平行且等于的一半,故或其補角即為異面直線與所成的角.設(shè)正方體的棱長為1,則,,故為等邊三角形,故∠EGH=60°考點:空間幾何體中異面直線所成角.【思路點睛】本題主要考查異面直線所成的角的定義和求法,找出兩異面直線所成的角,是解題的關(guān)鍵,體現(xiàn)了等價轉(zhuǎn)化的數(shù)學思想.取的中點,由三角形的中位線的性質(zhì)可得或其補角即為異面直線與所成的角.判斷為等邊三角形,從而求得異面直線與所成的角的大小2、A【解析】利用指數(shù)對數(shù)函數(shù)的性質(zhì)可以判定,從而做出判定.【詳解】因為指數(shù)函數(shù)是單調(diào)增函數(shù),是單調(diào)減函數(shù),對數(shù)函數(shù)是單調(diào)減函數(shù),所以,所以,故選:A3、A【解析】由題意可知kAB==-2,所以m=-8.故選A4、D【解析】先求得全集U和,根據(jù)補集運算的概念,即可得答案.【詳解】由題意得全集,,所以.故選:D5、B【解析】斜率為,截距,故不過第二象限.考點:直線方程.6、A【解析】由得畫出函數(shù)的圖象如圖所示,且當時,函數(shù)的圖象以為漸近線結(jié)合圖象可得當?shù)膱D象與直線有三個不同的交點,故若方程有三個不同的實數(shù)根,實數(shù)的取值范圍是.選A點睛:已知函數(shù)零點的個數(shù)(方程根的個數(shù))求參數(shù)值(取值范圍)的方法(1)直接法:直接求解方程得到方程的根,再通過解不等式確定參數(shù)范圍;(2)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)的值域問題加以解決,如在本題中,方程根的個數(shù),即為直線與圖象的公共點的個數(shù);(3)數(shù)形結(jié)合法:先對解析式變形,在同一平面直角坐標系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解,對于一些比較復雜的函數(shù)的零點問題常用此方法求解.7、D【解析】設(shè)冪函數(shù)方程,將點坐標代入,可求得的值,根據(jù)冪函數(shù)的性質(zhì),即可求得答案.【詳解】設(shè)冪函數(shù)的解析式為:,將代入解析式得:,解得,所以冪函數(shù),所以既不是奇函數(shù),也不是偶函數(shù),且,所以在上單調(diào)遞增.故選:D.8、C【解析】設(shè)AC=x,則BC=12-x(0<x<12)矩形的面積S=x(12-x)>20∴x2-12x+20<0∴2<x<10由幾何概率的求解公式可得,矩形面積大于20cm2的概率考點:幾何概型9、C【解析】由對數(shù)函數(shù)的性質(zhì)以及根式的性質(zhì)列不等式組,即可求解.【詳解】由題意可得解得,所以原函數(shù)的定義域為,故選:C10、B【解析】由題意知,直線PQ過點A(-1,2),且和直線OA垂直,故其方程為:y﹣2=(x+1),整理得x-2y+5=0故答案為B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)函數(shù)零點可轉(zhuǎn)化為有2個不等的根,利用對數(shù)函數(shù)的性質(zhì)可知,由均值不等式求解即可.詳解】不妨設(shè),因為函數(shù)有兩個零點分別為a,b,所以,所以,即,且,,當且僅當,即時等號成立,此時不滿足題意,,即,故答案為:12、【解析】作出函數(shù)的圖象,設(shè),求出的取值范圍以及的值,由此可求得的取值范圍.【詳解】作出函數(shù)的圖象,設(shè),如下圖所示:二次函數(shù)的圖象關(guān)于直線對稱,則,由圖可得,可得,解得,所以,.故答案為:.【點睛】關(guān)鍵點點睛:本題考查零點有關(guān)代數(shù)式的取值范圍的求解,解題的關(guān)鍵在于利用利用圖象結(jié)合對稱性以及對數(shù)運算得出零點相關(guān)的等式與不等式,進而求解.13、【解析】根據(jù)對數(shù)函數(shù)的圖象和性質(zhì)可得,函數(shù)f(x)=loga(2x﹣a)在區(qū)間[]上恒有f(x)>0,即,或,分別解不等式組,可得答案【詳解】若函數(shù)f(x)=loga(2x﹣a)在區(qū)間[]上恒有f(x)>0,則,或當時,解得<a<1,當時,不等式無解.綜上實數(shù)的取值范圍是(,1)故答案為(,1).【點睛】本題考查的知識點是復合函數(shù)的單調(diào)性,及不等式的解法,其中根據(jù)對數(shù)函數(shù)的圖象和性質(zhì)構(gòu)造不等式組是解答的關(guān)鍵,屬于中檔題.14、【解析】,又,∴,∴故答案為15、等腰【解析】根據(jù)可得,利用兩角和的正弦公式展開,再逆用兩角差的正弦公式化簡,結(jié)合三角形內(nèi)角的范圍可得,即可得的形狀.【詳解】因,,所以,即,所以,可得:,因為,,所以所以,即,故是等腰三角形.故答案為:等腰.16、【解析】結(jié)合題意,得到圓心到直線的距離,結(jié)合點到直線距離公式,計算a,即可【詳解】結(jié)合題意可知圓心到直線的距離,所以結(jié)合點到直線距離公式可得,結(jié)合,所以【點睛】考查了直線與圓的位置關(guān)系,考查了點到直線距離公式,難度中等三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2),;(3)見解析【解析】(1)由函數(shù)的最值求出,由周期求出,由五點法作圖求出的值,可得函數(shù)的解析式(2)利用正弦函數(shù)的單調(diào)性,求得函數(shù))的單調(diào)遞增區(qū)間(3)利用正弦函數(shù)的定義域、值域,求得函數(shù))在區(qū)間上的最大值和最小值試題解析:(1)00200根據(jù)表格可得再根據(jù)五點法作圖可得,故解析式為:(2)令函數(shù)的單調(diào)遞增區(qū)間為,.(3)因為,所以.得:.所以,當即時,在區(qū)間上的最小值為.當即時,在區(qū)間上的最大值為.【點睛】本題主要考查由函數(shù)的部分圖象求解析式,由函數(shù)的最值求出,由周期求出,由五點法作圖求出的值,正弦函數(shù)的單調(diào)性以及定義域、值域,屬于基礎(chǔ)題18、(1)證明見解析;(2)30°;(3)存在,.【解析】(1)首先根據(jù)已知條件并結(jié)合線面垂直的判定定理證明平面,再證明即可求解;(2)根據(jù)(1)中結(jié)論找出所求角,再結(jié)合已知條件即可求解;(3)首先假設(shè)存在,然后根據(jù)線面平行的性質(zhì)以及已知條件,看是否能求出點的具體位置,即可求解.【詳解】(1)因為,是的中點,所以,故四邊形是菱形,從而,所以沿著翻折成后,,又因為,所以平面,由題意,易知,,所以四邊形是平行四邊形,故,所以平面;(2)因為平面,所以與平面所成的角為,由已知條件,可知,,所以是正三角形,所以,所以與平面所成的角為30°;(3)假設(shè)線段上是存在點,使得平面,過點作交于,連結(jié),,如下圖:所以,所以,,,四點共面,又因平面,所以,所以四邊形為平行四邊形,故,所以為中點,故在線段上存在點,使得平面,且.19、(1)作圖見解析;單調(diào)減區(qū)間是和(2)0【解析】(1)由圖象關(guān)于原點對稱,補出另一部分,結(jié)合圖可求出函數(shù)的單調(diào)減區(qū)間,(2)先求出的值,然后根據(jù)函數(shù)的奇偶性和解析式求解即可【小問1詳解】因為函數(shù)的圖像關(guān)于原點對稱,所以是R上的奇函數(shù),故由對稱性畫出圖像在R上的單調(diào)減區(qū)間是和【小問2詳解】,所以20、或.【解析】分函數(shù)的對稱軸和兩種情況,分別建立方程,解之可得答案.【詳解】二次函數(shù)的對稱軸為直線,當,即時,當時,取得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 金融機構(gòu)保安工作內(nèi)容詳解
- 2025年全球及中國寵物安全救生衣行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球頂?shù)装b盒行業(yè)調(diào)研及趨勢分析報告
- 2025年全球及中國落地式拆碼盤機行業(yè)頭部企業(yè)市場占有率及排名調(diào)研報告
- 2025-2030全球廚房家用電器行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球智能電梯紫外線消毒系統(tǒng)行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球商用儲水式熱水器行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球耐高溫硅膠電纜行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球夾具零件行業(yè)調(diào)研及趨勢分析報告
- 2025-2030全球磁參數(shù)測量儀行業(yè)調(diào)研及趨勢分析報告
- 四川省自貢市2024-2025學年上學期八年級英語期末試題(含答案無聽力音頻及原文)
- 2025-2030年中國汽車防滑鏈行業(yè)競爭格局展望及投資策略分析報告新版
- 2025年上海用人單位勞動合同(4篇)
- 新疆烏魯木齊地區(qū)2025年高三年級第一次質(zhì)量監(jiān)測生物學試卷(含答案)
- 衛(wèi)生服務個人基本信息表
- 高中英語北師大版必修第一冊全冊單詞表(按單元編排)
- 苗圃建設(shè)項目施工組織設(shè)計范本
- 廣東省湛江市廉江市2023-2024學年八年級上學期期末考試數(shù)學試卷(含答案)
- 學校食品安全舉報投訴處理制度
- 2025年生物安全年度工作計劃
- 安徽省蕪湖市2023-2024學年高一上學期期末考試 生物 含解析
評論
0/150
提交評論