




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆貴州省安順市普通高中4月高三聯(lián)考數(shù)學(xué)試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù)的單調(diào)遞增區(qū)間是()A. B. C. D.2.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時,發(fā)現(xiàn)三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實上,甲、乙、丙三人的陳述都只對一半,根據(jù)以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路3.設(shè)、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.34.已知命題:使成立.則為()A.均成立 B.均成立C.使成立 D.使成立5.關(guān)于圓周率π,數(shù)學(xué)發(fā)展史上出現(xiàn)過許多很有創(chuàng)意的求法,如著名的浦豐實驗和查理斯實驗.受其啟發(fā),我們也可以通過設(shè)計下面的實驗來估計的值:先請全校名同學(xué)每人隨機寫下一個都小于的正實數(shù)對;再統(tǒng)計兩數(shù)能與構(gòu)成鈍角三角形三邊的數(shù)對的個數(shù);最后再根據(jù)統(tǒng)計數(shù)估計的值,那么可以估計的值約為()A. B. C. D.6.在中,角所對的邊分別為,已知,則()A.或 B. C. D.或7.如圖,在中,點,分別為,的中點,若,,且滿足,則等于()A.2 B. C. D.8.等比數(shù)列的各項均為正數(shù),且,則()A.12 B.10 C.8 D.9.一個正方體被一個平面截去一部分后,剩余部分的三視圖如下圖,則截去部分體積與剩余部分體積的比值為()A. B. C. D.10.已知集合,,若,則()A.或 B.或 C.或 D.或11.如圖,在平面四邊形ABCD中,若點E為邊CD上的動點,則的最小值為()A. B. C. D.12.如圖所示點是拋物線的焦點,點、分別在拋物線及圓的實線部分上運動,且總是平行于軸,則的周長的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則不等式的解集為____________.14.已知,滿足,則的展開式中的系數(shù)為______.15.某學(xué)習(xí)小組有名男生和名女生.若從中隨機選出名同學(xué)代表該小組參加知識競賽,則選出的名同學(xué)中恰好名男生名女生的概率為___________.16.已知函數(shù)在處的切線與直線平行,則為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,.(1)解不等式;(2)若方程有三個解,求實數(shù)的取值范圍.18.(12分)已知.(1)求不等式的解集;(2)若存在,使得成立,求實數(shù)的取值范圍19.(12分)已知直線l的極坐標方程為,圓C的參數(shù)方程為(為參數(shù)).(1)請分別把直線l和圓C的方程化為直角坐標方程;(2)求直線l被圓截得的弦長.20.(12分)已知橢圓的離心率為,點在橢圓上.(Ⅰ)求橢圓的標準方程;(Ⅱ)設(shè)直線交橢圓于兩點,線段的中點在直線上,求證:線段的中垂線恒過定點.21.(12分)在平面直角坐標系中,曲線的參數(shù)方程為:(為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為:.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)若直線與曲線交于,兩點,與曲線交于,兩點,求取得最大值時直線的直角坐標方程.22.(10分)在銳角中,分別是角的對邊,,,且.(1)求角的大?。唬?)求函數(shù)的值域.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用輔助角公式,化簡函數(shù)的解析式,再根據(jù)正弦函數(shù)的單調(diào)性,并采用整體法,可得結(jié)果.【詳解】因為,由,解得,即函數(shù)的增區(qū)間為,所以當(dāng)時,增區(qū)間的一個子集為.故選D.【點睛】本題考查了輔助角公式,考查正弦型函數(shù)的單調(diào)遞增區(qū)間,重點在于把握正弦函數(shù)的單調(diào)性,同時對于整體法的應(yīng)用,使問題化繁為簡,難度較易.2、D【解析】
甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個是正確另外兩個錯誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯誤,又三人的陳述都只對一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D【點睛】本題主要考查了判斷與推理的問題,重點是找到三人中都提到的內(nèi)容進行分類討論,屬于基礎(chǔ)題型.3、C【解析】
先根據(jù)奇偶性,求出的解析式,令,即可求出?!驹斀狻恳驗?、分別是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡得,即令,所以,故選C?!军c睛】本題主要考查函數(shù)性質(zhì)奇偶性的應(yīng)用。4、A【解析】試題分析:原命題為特稱命題,故其否定為全稱命題,即.考點:全稱命題.5、D【解析】
由試驗結(jié)果知對0~1之間的均勻隨機數(shù),滿足,面積為1,再計算構(gòu)成鈍角三角形三邊的數(shù)對,滿足條件的面積,由幾何概型概率計算公式,得出所取的點在圓內(nèi)的概率是圓的面積比正方形的面積,即可估計的值.【詳解】解:根據(jù)題意知,名同學(xué)取對都小于的正實數(shù)對,即,對應(yīng)區(qū)域為邊長為的正方形,其面積為,若兩個正實數(shù)能與構(gòu)成鈍角三角形三邊,則有,其面積;則有,解得故選:.【點睛】本題考查線性規(guī)劃可行域問題及隨機模擬法求圓周率的幾何概型應(yīng)用問題.線性規(guī)劃可行域是一個封閉的圖形,可以直接解出可行域的面積;求解與面積有關(guān)的幾何概型時,關(guān)鍵是弄清某事件對應(yīng)的面積,必要時可根據(jù)題意構(gòu)造兩個變量,把變量看成點的坐標,找到試驗全部結(jié)果構(gòu)成的平面圖形,以便求解.6、D【解析】
根據(jù)正弦定理得到,化簡得到答案.【詳解】由,得,∴,∴或,∴或.故選:【點睛】本題考查了正弦定理解三角形,意在考查學(xué)生的計算能力.7、D【解析】
選取為基底,其他向量都用基底表示后進行運算.【詳解】由題意是的重心,,∴,,∴,故選:D.【點睛】本題考查向量的數(shù)量積,解題關(guān)鍵是選取兩個不共線向量作為基底,其他向量都用基底表示參與運算,這樣做目標明確,易于操作.8、B【解析】
由等比數(shù)列的性質(zhì)求得,再由對數(shù)運算法則可得結(jié)論.【詳解】∵數(shù)列是等比數(shù)列,∴,,∴.故選:B.【點睛】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運算法則,掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.9、D【解析】
試題分析:如圖所示,截去部分是正方體的一個角,其體積是正方體體積的,剩余部分體積是正方體體積的,所以截去部分體積與剩余部分體積的比值為,故選D.考點:本題主要考查三視圖及幾何體體積的計算.10、B【解析】
因為,所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.11、A【解析】
分析:由題意可得為等腰三角形,為等邊三角形,把數(shù)量積分拆,設(shè),數(shù)量積轉(zhuǎn)化為關(guān)于t的函數(shù),用函數(shù)可求得最小值。詳解:連接BD,取AD中點為O,可知為等腰三角形,而,所以為等邊三角形,。設(shè)=所以當(dāng)時,上式取最小值,選A.點睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時利用向量共線轉(zhuǎn)化為函數(shù)求最值。12、B【解析】
根據(jù)拋物線方程求得焦點坐標和準線方程,結(jié)合定義表示出;根據(jù)拋物線與圓的位置關(guān)系和特點,求得點橫坐標的取值范圍,即可由的周長求得其范圍.【詳解】拋物線,則焦點,準線方程為,根據(jù)拋物線定義可得,圓,圓心為,半徑為,點、分別在拋物線及圓的實線部分上運動,解得交點橫坐標為2.點、分別在兩個曲線上,總是平行于軸,因而兩點不能重合,不能在軸上,則由圓心和半徑可知,則的周長為,所以,故選:B.【點睛】本題考查了拋物線定義、方程及幾何性質(zhì)的簡單應(yīng)用,圓的幾何性質(zhì)應(yīng)用,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
,,分類討論即可.【詳解】由已知,,,若,則或解得或,所以不等式的解集為.故答案為:【點睛】本題考查分段函數(shù)的應(yīng)用,涉及到解一元二次不等式,考查學(xué)生的計算能力,是一道中檔題.14、1【解析】
根據(jù)二項式定理求出,然后再由二項式定理或多項式的乘法法則結(jié)合組合的知識求得系數(shù).【詳解】由題意,.∴的展開式中的系數(shù)為.故答案為:1.【點睛】本題考查二項式定理,掌握二項式定理的應(yīng)用是解題關(guān)鍵.15、【解析】
從7人中選出2人則總數(shù)有,符合條件數(shù)有,后者除以前者即得結(jié)果【詳解】從7人中隨機選出2人的總數(shù)有,則記選出的名同學(xué)中恰好名男生名女生的概率為事件,∴故答案為:【點睛】組合數(shù)與概率的基本運用,熟悉組合數(shù)公式16、【解析】
根據(jù)題意得出,由此可得出實數(shù)的值.【詳解】,,直線的斜率為,由于函數(shù)在處的切線與直線平行,則.故答案為:.【點睛】本題考查利用函數(shù)的切線與直線平行求參數(shù),解題時要結(jié)合兩直線的位置關(guān)系得出兩直線斜率之間的關(guān)系,考查計算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)對分三種情況討論,分別去掉絕對值符號,然后求解不等式組,再求并集即可得結(jié)果;(2).作出函數(shù)的圖象,當(dāng)直線與函數(shù)的圖象有三個公共點時,方程有三個解,由圖可得結(jié)果.【詳解】(1)不等式,即為.當(dāng)時,即化為,得,此時不等式的解集為,當(dāng)時,即化為,解得,此時不等式的解集為.綜上,不等式的解集為.(2)即.作出函數(shù)的圖象如圖所示,當(dāng)直線與函數(shù)的圖象有三個公共點時,方程有三個解,所以.所以實數(shù)的取值范圍是.【點睛】絕對值不等式的解法:法一:利用絕對值不等式的幾何意義求解,體現(xiàn)了數(shù)形結(jié)合的思想;法二:利用“零點分段法”求解,體現(xiàn)了分類討論的思想;法三:通過構(gòu)造函數(shù),利用函數(shù)的圖象求解,體現(xiàn)了函數(shù)與方程的思想.18、(1).(2).【解析】試題分析:(Ⅰ)通過討論x的范圍,得到關(guān)于x的不等式組,解出取并集即可;(Ⅱ)求出f(x)的最大值,得到關(guān)于a的不等式,解出即可.試題解析:(1)不等式等價于或或,解得或,所以不等式的解集是;(2),,,解得實數(shù)的取值范圍是.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區(qū)間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數(shù)形結(jié)合思想,將絕對值不等式與函數(shù)以及不等式恒成立交匯、滲透,解題時強化函數(shù)、數(shù)形結(jié)合與轉(zhuǎn)化化歸思想方法的靈活應(yīng)用,這是命題的新動向.19、(1).x2+y2=1.(2)16【解析】
(1)直接利用極坐標方程和參數(shù)方程公式化簡得到答案.(2)圓心到直線的距離為,故弦長為得到答案.【詳解】(1),即,即,即.,故.(2)圓心到直線的距離為,故弦長為.【點睛】本題考查了極坐標方程和參數(shù)方程,圓的弦長,意在考查學(xué)生的計算能力和轉(zhuǎn)化能力.20、(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)把點代入橢圓方程,結(jié)合離心率得到關(guān)于的方程,解方程即可;(Ⅱ)聯(lián)立直線與橢圓方程得到關(guān)于的一元二次方程,利用韋達定理和中垂線的定義求出線段的中垂線方程即可證明.【詳解】(Ⅰ)由已知橢圓過點得,,又,得,所以,即橢圓方程為.(Ⅱ)證明:由,得,由,得,由韋達定理可得,,設(shè)的中點為,得,即,,的中垂線方程為,即,故得中垂線恒過點.【點睛】本題考查橢圓的標準方程及其幾何性質(zhì)、直線與橢圓的位置關(guān)系及橢圓中的定值問題;考查運算求解能力和知識的綜合運用能力;正確求出橢圓方程和利用中垂線的定義正確表示出中垂線方程是求解本題的關(guān)鍵;屬于中檔題.21、(1)曲線,曲線.(2).【解析】
(1)用和消去參數(shù)即得的極坐標方程;將兩邊同時乘以,然后由解得直角坐標方程.(2)過極點的直線的參數(shù)方程為,代入到和:中,表示出即可求解.【詳解】解:由和,得,化簡得故:將兩邊同時乘以,得因為,所以得的直角坐標方程.(2)設(shè)直線的極坐標方程由,得,由,得故當(dāng)時,取得最大值此時直線的極坐標方程為:,其直角坐標方程為:.【點睛】考查直角坐標方程、極坐標方程、參數(shù)方程的互相轉(zhuǎn)化以及應(yīng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國留學(xué)游學(xué)行業(yè)競爭格局及投資戰(zhàn)略研究報告
- 2024-2029年中國玻璃釉電容器行業(yè)市場前瞻與投資戰(zhàn)略規(guī)劃分析報告
- 中國鋼件齒輪項目投資可行性研究報告
- 2025年湖南農(nóng)業(yè)大學(xué)017經(jīng)濟學(xué)院025100金融報錄數(shù)據(jù)分析報告初試+復(fù)試
- 瀝青攪拌機投資建設(shè)項目立項報告
- 2025年保健品研發(fā)質(zhì)量保證協(xié)議范本
- 2025版中介機構(gòu)廠房租賃合同范本(含稅費)
- 2025年精密壓鑄件行業(yè)深度研究分析報告
- 硅鐵項目可行性分析報告
- 2025年度高品質(zhì)裝飾材料供應(yīng)商合作合同
- 集成電路研究報告-集成電路項目可行性研究報告2024年
- 2024年湖南生物機電職業(yè)技術(shù)學(xué)院高職單招職業(yè)技能測驗歷年參考題庫(頻考版)含答案解析
- 樁基承載力自平衡法檢測方案資料
- 新版人教版七年級下冊數(shù)學(xué)全冊教案教學(xué)設(shè)計含教學(xué)反思
- 2025云南昆明空港投資開發(fā)集團招聘7人高頻重點提升(共500題)附帶答案詳解
- 簡單的路線圖(說課稿)2024-2025學(xué)年三年級上冊數(shù)學(xué)西師大版
- 成都市2024-2025學(xué)年度上期期末高一期末語文試卷(含答案)
- 2025年教育局財務(wù)工作計劃
- Unit 5 Now and Then-Lesson 3 First-Time Experiences 說課稿 2024-2025學(xué)年北師大版(2024)七年級英語下冊
- 《網(wǎng)絡(luò)攻擊與防御》課件第四章 基于系統(tǒng)的攻擊與防御
- 供電一把手講安全課
評論
0/150
提交評論