專題04 全等模型-半角模型(原卷版)_第1頁(yè)
專題04 全等模型-半角模型(原卷版)_第2頁(yè)
專題04 全等模型-半角模型(原卷版)_第3頁(yè)
專題04 全等模型-半角模型(原卷版)_第4頁(yè)
專題04 全等模型-半角模型(原卷版)_第5頁(yè)
已閱讀5頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

專題04全等模型-半角模型全等三角形在中考數(shù)學(xué)幾何模塊中占據(jù)著重要地位,也是學(xué)生必須掌握的一塊內(nèi)容,本專題就半角模型進(jìn)行梳理及對(duì)應(yīng)試題分析,方便掌握。半角模型概念:過多邊形一個(gè)頂點(diǎn)作兩條射線,使這兩條射線夾角等于該頂角一半。思想方法:通過旋轉(zhuǎn)(或截長(zhǎng)補(bǔ)短)構(gòu)造全等三角形,實(shí)現(xiàn)線段的轉(zhuǎn)化。解題思路一般是將半角兩邊的三角形通過旋轉(zhuǎn)到一邊合并成新的三角形,從而進(jìn)行等量代換,然后證明與半角形成的三角形全等,再通過全等的性質(zhì)得到線段之間的數(shù)量關(guān)系。半角模型(題中出現(xiàn)角度之間的半角關(guān)系)利用旋轉(zhuǎn)——證全等——得到相關(guān)結(jié)論.模型1.半角模型(90°-45°型)【模型展示】1)正方形半角模型條件:四邊形ABCD是正方形,∠ECF=45°;結(jié)論:①△BCE≌△DCG;②△CEF≌△CGF;③EF=BE+DF;④AEF的周長(zhǎng)=2AB;⑤CE、CF分別平分∠BEF和∠EFD。2)等腰直角三角形半角模型條件:ABC是等腰直角三角形,∠DAE=45°;結(jié)論:①△BAD≌△CAG;②△DAE≌△GAE;③∠ECG==90°;④DE2=BD2+EC2;例1.(2022·黑龍江九年級(jí)階段練習(xí))已知:正方形ABCD中,∠MAN=45°,∠MAN繞點(diǎn)A順時(shí)針旋轉(zhuǎn),它的兩邊分別交CB、DC(或它們的延長(zhǎng)線)于點(diǎn)M、N.當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM=DN時(shí),(如圖1),易證BM+DN=MN.(1)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到BM≠DN時(shí)(如圖2),線段BM、DN和MN之間有怎樣的數(shù)量關(guān)系?寫出猜想,并加以證明;(2)當(dāng)∠MAN繞點(diǎn)A旋轉(zhuǎn)到如圖3的位置時(shí),線段BM、DN和MN之間又有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫出你的猜想.例2.(2022·北京四中九年級(jí)期中)如圖,在△ABC中,∠ACB=90°,CA=CB,點(diǎn)P在線段AB上,作射線CP(0°<∠ACP<45°),射線CP繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)45°,得到射線CQ,過點(diǎn)A作AD⊥CP于點(diǎn)D,交CQ于點(diǎn)E,連接BE.(1)依題意補(bǔ)全圖形;(2)用等式表示線段AD,DE,BE之間的數(shù)量關(guān)系,并證明.例3.(2023·浙江·八年級(jí)假期作業(yè))如圖,在中,,,D、E是斜邊上兩點(diǎn),且,若,,,則與的面積之和為(

)A.36 B.21 C.30 D.22模型2.半角模型(60°-30°型或120°-60°型)1)等邊三角形半角模型(120°-60°型)條件:ABC是等邊三角形,BDC是等腰三角形,且BD=CD,∠BDC=120°,∠EDF=60°;結(jié)論:①△BDE≌△CDG;②△EDF≌△GDF;③EF=BE+FC;④AEF的周長(zhǎng)=2AB;⑤DE、DF分別平分∠BEF和∠EFC。2)等邊三角形半角模型(60°-30°型)例1.(2022·綿陽市八年級(jí)期中)在等邊△ABC的兩邊AB、AC所在直線上分別有兩點(diǎn)M、N,D為△ABC外一點(diǎn),且∠MDN=60°,∠BDC=120°,BD=DC.探究:當(dāng)M、N分別在直線AB、AC上移動(dòng)時(shí),BM、NC、MN之間的數(shù)量關(guān)系.(1)如圖1,當(dāng)點(diǎn)M、N邊AB、AC上,且DM=DN時(shí),BM、NC、MN之間的數(shù)量關(guān)系是;(2)如圖2,點(diǎn)M、N在邊AB、AC上,且當(dāng)DM≠DN時(shí),猜想(1)問的結(jié)論還成立嗎?若成立請(qǐng)直接寫出你的結(jié)論;若不成立請(qǐng)說明理由.(3)如圖3,當(dāng)M、N分別在邊AB、CA的延長(zhǎng)線上時(shí),探索BM、NC、MN之間的數(shù)量關(guān)系如何?并給出證明.例2.(2022秋·江蘇揚(yáng)州·八年級(jí)校考階段練習(xí))如圖,在等邊三角形中,在AC邊上取兩點(diǎn)使.若,,,則以為邊長(zhǎng)的三角形的形狀為(

)A.銳角三角形 B.直角三角形 C.鈍角三角形 D.隨的值而定例3.(2022·廣東廣州·二模)如圖,點(diǎn)為等邊外一點(diǎn),,,點(diǎn),分別在和上,且,,,則的邊長(zhǎng)為______.例4.(2023.重慶市八年級(jí)期中)問題情境:在等邊△ABC的兩邊AB,AC上分別有兩點(diǎn)M,N,點(diǎn)D為△ABC外一點(diǎn),且∠MDN=60°,∠BDC=120°,BD=DC.特例探究:如圖1,當(dāng)DM=DN時(shí),(1)∠MDB=度;(2)MN與BM,NC之間的數(shù)量關(guān)系為;歸納證明:(3)如圖2,當(dāng)DM≠DN時(shí),在NC的延長(zhǎng)線上取點(diǎn)E,使CE=BM,連接DE,猜想MN與BM,NC之間的數(shù)量關(guān)系,并加以證明.拓展應(yīng)用:(4)△AMN的周長(zhǎng)與△ABC的周長(zhǎng)的比為.模型3.半角模型(-型)條件:∠BAC=,AB=AC,∠DAE=;結(jié)論:①△BAD≌△CAF;②△EAD≌△EAF;③∠ECF=180°-。例1.(2023.上海七年級(jí)期中)如圖,梯形ABCD中,AD∥BC,AB=BC=DC,點(diǎn)E、F分別在AD、AB上,且.(1)求證:;(2)連結(jié)AC,若,求度數(shù).例2.(2023春·江蘇·八年級(jí)專題練習(xí))(1)如圖①,在四邊形中,,,,分別是邊,上的點(diǎn),且.請(qǐng)直接寫出線段,,之間的數(shù)量關(guān)系:___________;(2)如圖②,在四邊形中,,,,分別是邊,上的點(diǎn),且,(1)中的結(jié)論是否仍然成立?請(qǐng)寫出證明過程;(3)在四邊形中,,,,分別是邊,所在直線上的點(diǎn),且.請(qǐng)畫出圖形(除圖②外),并直接寫出線段,,之間的數(shù)量關(guān)系.例3.(2022秋·陜西延安·八年級(jí)統(tǒng)考期末)【問題提出】(1)如圖①,在四邊形中,,,E、F分別是邊BC、CD上的點(diǎn),且.求證:;【問題探究】(2)如圖②,在四邊形中,,,E、F分別是邊BC、CD延長(zhǎng)線上的點(diǎn),且,(1)中的結(jié)論是否仍然成立?若成立,請(qǐng)說明理由;若不成立,請(qǐng)寫出它們之間的數(shù)量關(guān)系,并說明理由.例4.(2023.山東八年級(jí)期中)綜合與實(shí)踐(1)如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,則MN,AM,CN的數(shù)量關(guān)系為.(2)如圖2,在四邊形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,點(diǎn)M、N分別在AD、CD上,若∠MBN=∠ABC,試探索線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請(qǐng)寫出猜想,并給予證明.(3)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長(zhǎng)線上,若∠MBN=∠ABC,試探究線段MN、AM、CN的數(shù)量關(guān)系為.課后專項(xiàng)訓(xùn)練1.(2022.廣西八年級(jí)期中)如圖,△ABC是邊長(zhǎng)為6的等邊三角形,BD=CD,∠BDC=120°,以點(diǎn)D為頂點(diǎn)作一個(gè)60°角,使其兩邊分別交AB于點(diǎn)M,交AC于點(diǎn)N,連結(jié)MN,則△AMN的周長(zhǎng)是.2.(2023·廣東八年級(jí)課時(shí)練習(xí))四邊形是由等邊和頂角為的等腰排成,將一個(gè)角頂點(diǎn)放在處,將角繞點(diǎn)旋轉(zhuǎn),該交兩邊分別交直線、于、,交直線于、兩點(diǎn).(1)當(dāng)、都在線段上時(shí)(如圖1),請(qǐng)證明:;(2)當(dāng)點(diǎn)在邊的延長(zhǎng)線上時(shí)(如圖2),請(qǐng)你寫出線段,和之間的數(shù)量關(guān)系,并證明你的結(jié)論;(3)在(1)的條件下,若,,請(qǐng)直接寫出的長(zhǎng)為.3.(2022·重慶市育才中學(xué)二模)回答問題(1)【初步探索】如圖1:在四邊形ABCD中,AB=AD,∠B=∠ADC=90°,E、F分別是BC、CD上的點(diǎn),且EF=BE+FD,探究圖中∠BAE、∠FAD、∠EAF之間的數(shù)量關(guān)系.小王同學(xué)探究此問題的方法是:延長(zhǎng)FD到點(diǎn)G,使DG=BE.連接AG,先證明△ABE≌△ADG,再證明△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是_______________;(2)【靈活運(yùn)用】如圖2,若在四邊形ABCD中,AB=AD,∠B+∠D=180°.E、F分別是BC、CD上的點(diǎn),且EF=BE+FD,上述結(jié)論是否仍然成立,并說明理由;(3)【拓展延伸】知在四邊形ABCD中,∠ABC+∠ADC=180°,AB=AD,若點(diǎn)E在CB的延長(zhǎng)線上,點(diǎn)F在CD的延長(zhǎng)線上,如圖3所示,仍然滿足EF=BE+FD,請(qǐng)直接寫出∠EAF與∠DAB的數(shù)量關(guān)系.4.(2022·江西景德鎮(zhèn)·九年級(jí)期中)(1)【特例探究】如圖1,在四邊形中,,,,,猜想并寫出線段,,之間的數(shù)量關(guān)系,證明你的猜想;(2)【遷移推廣】如圖2,在四邊形中,,,.請(qǐng)寫出線段,,之間的數(shù)量關(guān)系,并證明;(3)【拓展應(yīng)用】如圖3,在海上軍事演習(xí)時(shí),艦艇在指揮中心(處)北偏東20°的處.艦艇乙在指揮中心南偏西50°的處,并且兩艦艇在指揮中心的距離相等,接到行動(dòng)指令后,艦艇甲向正西方向以80海里/時(shí)的速度前進(jìn),同時(shí)艦艇乙沿北偏西60°的方向以90海里/時(shí)的速度前進(jìn),半小時(shí)后,指揮中心觀測(cè)到甲、乙兩艦艇分別到達(dá),處,且指揮中心觀測(cè)兩艦艇視線之間的夾角為75°.請(qǐng)直接寫出此時(shí)兩艦艇之間的距離.5.(2022·浙江·九年級(jí)階段練習(xí))如圖1,等腰直角三角板的一個(gè)銳角頂點(diǎn)與正方形ABCD的頂點(diǎn)A重合,將此三角板繞點(diǎn)A旋轉(zhuǎn),使三角板中該銳角的兩條邊分別交正方形的兩邊BC,DC于點(diǎn)E,F(xiàn),連接EF.(1)猜想BE、EF、DF三條線段之間的數(shù)量關(guān)系,并證明你的猜想;(2)在圖1中,過點(diǎn)A作AM⊥EF于點(diǎn)M,請(qǐng)直接寫出AM和AB的數(shù)量關(guān)系;(3)如圖2,將Rt△ABC沿斜邊AC翻折得到Rt△ADC,E,F(xiàn)分別是BC,CD邊上的點(diǎn),∠EAF=∠BAD,連接EF,過點(diǎn)A作AM⊥EF于點(diǎn)M,試猜想AM與AB之間的數(shù)量關(guān)系.并證明你的猜想.6.(2022·湖北武漢·九年級(jí)期中)(1)如圖1,正方形ABCD中,點(diǎn)E、F分別是邊BC、CD上的點(diǎn),EF=BE+DF,請(qǐng)你直接寫出∠BAE、∠FAD、∠EAF之間的數(shù)量關(guān)系:.(2)如圖2,在四邊形ABCD中,AB=AD,,點(diǎn)E、F分別是邊BC、CD上的點(diǎn),EF=BE+FD,請(qǐng)問:(1)中結(jié)論是否成立?若成立,請(qǐng)證明結(jié)論.(3)若(2)中的點(diǎn)E、點(diǎn)F分別在邊CB、CD的延長(zhǎng)線上(如圖3所示),其他條件不變,則下列兩個(gè)關(guān)于∠EAF與∠BAD的關(guān)系式,哪個(gè)是正確的?請(qǐng)證明結(jié)論.①∠EAF=∠BAD;②2∠EAF+∠BAD=360°.7.(2023春·山東·八年級(jí)專題練習(xí))已知,如圖1,四邊形是正方形,,分別在邊、上,且,我們把這種模型稱為“半角模型”,在解決“半角模型”問題時(shí),旋轉(zhuǎn)是一種常用的方法.(1)在圖1中,連接,為了證明結(jié)論“”,小亮將繞點(diǎn)順時(shí)針旋轉(zhuǎn)后解答了這個(gè)問題,請(qǐng)按小亮的思路寫出證明過程;(2)如圖2,當(dāng)繞點(diǎn)旋轉(zhuǎn)到圖2位置時(shí),試探究與、之間有怎樣的數(shù)量關(guān)系?8.(2022春·廣東廣州·八年級(jí)廣州大學(xué)附屬中學(xué)校考期末)問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.(1)延長(zhǎng)FD到點(diǎn)G使DG=BE,連接AG,得到至△ADG,從而可以證明EF=BE+FD,請(qǐng)你利用圖(1)證明上述結(jié)論.(2)如圖(2),四邊形ABCD中,,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足______數(shù)量關(guān)系時(shí),仍有EF=BE+FD,并說明理由.(3)如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD,已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F.且AE⊥AD,米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(zhǎng).9.(2023秋·江蘇揚(yáng)州·八年級(jí)校考期末)綜合與實(shí)踐(1)如圖1,在正方形ABCD中,點(diǎn)M、N分別在AD、CD上,若∠MBN=45°,則MN,AM,CN的數(shù)量關(guān)系為.(2)如圖2,在四邊形ABCD中,BC∥AD,AB=BC,∠A+∠C=180°,點(diǎn)M、N分別在AD、CD上,若∠MBN=∠ABC,試探索線段MN、AM、CN有怎樣的數(shù)量關(guān)系?請(qǐng)寫出猜想,并給予證明.(3)如圖3,在四邊形ABCD中,AB=BC,∠ABC+∠ADC=180°,點(diǎn)M、N分別在DA、CD的延長(zhǎng)線上,若∠MBN=∠ABC,試探究線段MN、AM、CN的數(shù)量關(guān)系為.10.(2023春·浙江·八年級(jí)專題練習(xí))(1)如圖①,在正方形中,、分別是、上的點(diǎn),且,連接,探究、、之間的數(shù)量關(guān)系,并說明理由;(2)如圖②,在四邊形中,,,、分別是、上的點(diǎn),且,此時(shí)(1)中的結(jié)論是否仍然成立?請(qǐng)說明理由.11.如圖,正方形ABCD中,∠EAF的兩邊分別與邊BC、CD交于點(diǎn)E、F,AE、AF分別交BD于點(diǎn)G、H,且∠EAF=45°.(1)當(dāng)∠AEB=55°時(shí),求∠DAH的度數(shù);(2)設(shè)∠AEB=α,則∠AFD=(用含α的代數(shù)式表示);(3)求證:∠AEB=∠AEF.12.(2022秋·山西呂梁·九年級(jí)??计谥校┰诰毩?xí)課上,慧慧同學(xué)遇到了這樣一道數(shù)學(xué)題:如圖,把兩個(gè)全等的直角三角板的斜邊重合,組成一個(gè)四邊形ACBD,∠ACD=30°,以D為頂點(diǎn)作∠MDN,交邊AC,BC于點(diǎn)M,N,∠MDN=60°,連接MN.探究AM,MN,BN三條線段之間的數(shù)量關(guān)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論