船舶專業(yè)外文文獻(xiàn)_第1頁
船舶專業(yè)外文文獻(xiàn)_第2頁
船舶專業(yè)外文文獻(xiàn)_第3頁
船舶專業(yè)外文文獻(xiàn)_第4頁
船舶專業(yè)外文文獻(xiàn)_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

SpatialschedulingforlargeassemblyblocksinshipbuildingAbstract:Thispaperaddressesthespatialschedulingproblem(SPP)forlargeassemblyblocks,whicharisesinashipyardassemblyshop。Thespatialschedulingproblemistoscheduleasetofjobs,ofwhicheachrequiresitsphysicalspaceinarestrictedspace。Thisproblemiscomplicatedbecauseboththeschedulingofassemblieswithdifferentduedatesandearlieststartingtimesandthespatialallocationofblockswithdifferentsizesandloadsmustbeconsideredsimultaneously。Thisproblemunderconsiderationaimstotheminimizationofboththemakespanandtheloadbalanceandincludesvariousreal-worldconstraints,whichincludesthepossibledirectionalrotationofblocks,theexistenceofsymmetricblocks,andtheassignmentofsomeblockstodesignatedworkplacesorworkteams.Theproblemisformulatedasamixedintegerprogramming(MIP)modelandsolvedbyacommerciallyavailablesolver.Atwo-stageheuristicalgorithmhasbeendevelopedtousedispatchingpriorityrulesandadiagonalfillspaceallocationmethod,whichisamodificationofbottom-left-fillspaceallocationmethod。ThecomparisonandcomputationalresultsshowstheproposedMIPmodelaccommodatesvariousconstraintsandtheproposedheuristicalgorithmsolvesthespatialschedulingproblemseffectivelyandefficiently。Keywords:Largeassemblyblock;Spatialscheduling;Loadbalancing;Makespan;Shipbuilding1.IntroductionShipbuildingisacomplexproductionprocesscharacterizedbyheavyandlargeparts,variousequipment,skilledprofessionals,prolongedleadtime,andheterogeneousresourcerequirements.Theshipbuildingprocessisdividedintosubprocessesintheshipyard,includingshipdesign,cuttingandbendingoperations,blockassembly,outfitting,painting,pre-erectionanderection。Theassemblyblocksarecalledtheminorassemblyblock,thesubassemblyblock,andthelargeassemblyblockaccordingtotheirsizeandprogressesinthecourseofassemblyprocesses。Thispaperfocusesonthespatialschedulingproblemoflargeassemblyblocksinassemblyshops。torecognizethattherearevariousspatialschedulingproblemsineveryaspectofshipbuildingduetothelimitedspace,facilities,equipment,laborandtime。TheSPPsoccurinvariousworkingareassuchascuttingandblastshops,assemblyshops,outfittingshops,pre—erectionyard,anddrydocks。TheSPPatdifferentareashasdifferentrequirementsandconstraintstocharacterizetheuniqueSPPs.Inaddition,thedepletionofenergyresourcesonlandputmoreemphasisontheoceandevelopment。Theshipbuildingindustriesfacethetransitionoffocusfromthetraditionalshipbuildingtooceanplantmanufacturing.Therefore,thediversityofassemblyblocks,materials,facilitiesandoperationsinshipyardsincreasesrapidly。TherearesomesolutionproviderssuchasSiemens?andDassultSystems?toprovideintegratedsoftwareincludingproductlifemanagement,enterpriseresourceplanningsystem,simulationandetc。Theyindicatedtheneedsofefficientalgorithmstosolvemedium-tolarge-sizedSPPproblemsin20

min,sothattheshopcanquicklyre-optimizetheproductionplanuponthefrequentandunexpectedchangesinshopfloorswiththeongoingoperationsonexitingblocksintact。Therearemanydifferentapplicationswhichrequireefficientschedulingalgorithmswithvariousconstraintsandcharacteristics(HYPERLINK”/science/article/pii/S0360835215002296"Kimetal。,2013,b9015"NguyenandYun,2014

and

HYPERLINK”/science/article/pii/S0360835215002296"\l”b9020"Yanetal.,2014)。However,thespatialschedulingproblemwhichconsidersspatiallayoutanddynamicjobschedulinghasnotbeenstudiedextensively.Untilnow,spatialschedulinghastobecarriedoutbyhumanschedulersonlywiththeirexperiencesandhistoricaldata。Evenwhenhumanexpertshavemuchexperienceinspatialscheduling,ittakesalongtimeandintensiveefforttoproduceasatisfactoryschedule,duetothecomplexityofconsideringblocks’geometricshapes,loads,requiredfacilities,etc。Inpractice,spatialschedulingformorethanasix—monthperiodisbeyondthehumanschedulers’capacity.Moreover,thespaceintheworkingareastendstobethemostcriticalresourceinshipbuilding。Therefore,theeffectivemanagementofspatialresourcesthroughautomationofthespatialschedulingprocessisacriticalissueintheimprovementofproductivityinshipbuildingplants.Ashipyardassemblyshopisconsistedofpinnedworkplaces,equipment,andoverhangcranes。Duetotheheavyweightoflargeassemblyblock,overhangcranesareusedtoaccessanyareasoverotherobjectswithoutanyhindranceintheassemblyshop。Theheightofcranescanlimittheheightofblocksthatcanbeassembledintheshop。Theshopcanbeconsideredasatwo—dimensionalspace。Theblocksareplacedonpreciselypinnedworkplaces。Oncetheblockisallocatedtoacertainareainaworkplace,itisdesirablenottomovetheblockagaintodifferentlocationsduetothesizeandweightofthelargeassemblyblocks.Therefore,itisimportanttoallocatetheworkspacetoeachblockcarefully,sothattheworkspaceinanassemblyshopcanbeutilizedinamostefficientway。Inaddition,sinceeachblockhasitsduedatewhichispre—determinedatthestageofshipdesign,thetardinessofablockassemblycanleadtoseveredelayinthefollowingoperations。Therefore,inthespatialschedulingproblemforlargeassemblyblocks,theschedulingofassemblyprocessesforblocksandtheallocationofblockstospecificlocationsinworkplacesmustbeconsideredatthesametime.Astheterminologysuggests,spatialschedulingpursuestheoptimalspatiallayoutandthedynamicschedulewhichcanalsosatisfytraditionalschedulingconstraintssimultaneously。Inaddition,therearemanyconstraintsorrequirementswhichareseriousconcernsonshopfloorsandthesecomplicatetheSPP。Theconstraintsorrequirementsthisstudyconsideredareexplainedhere:(1)Blockscanbeputineitherdirections,horizontalorvertical。(2)Sincetheshipissymmetricaroundthecenterline,thereexistsymmetricblocks.Thesesymmetricblocksarerequiredtobeputnexttoeachotheronthesameworkplace。(3)Someblocksarerequiredtobeputonacertainspecialareaoftheworkplace,becausetheworkteamsonthatareahasspecialequipmentorskillstoachieveacertainlevelofqualityorcompletethenecessarytasks。(4)Frequently,theproductionplanmaynotbeimplementedasplanned,sothatfrequentmodificationsinproductionplansarerequiredtocopewiththechangesintheshop。Atthesemodifications,itisrequiredtoproduceanewmodifiedproductionplanwhichdoesnotremoveormovethepre—existingblocksintheworkplacetocompletetheongoingoperations.(5)Ifpossibleatanytime,theloadbalancingovertheworkteams,i。e.,workplacesaredesirableinordertokeepalltaskassignmentstoworkteamsfairanduniform。Lee,Lee,andChoi(1996)studiedaspatialschedulingthatconsidersnotonlytraditionalschedulingconstraintslikeresourcecapacityandduedates,butalsodynamicspatiallayoutoftheobjects.Theyusedtwo—dimensionalarrangementalgorithmdevelopedbyHYPERLINK”http:///science/article/pii/S0360835215002296”Lozano-Perez(1983)todeterminethespatiallayoutofblocksinshipbuilding。HYPERLINK”/science/article/pii/S0360835215002296”Koh,Eom,andJang(2008)extendedtheirpreciousworks(Kohetal。,1999)byproposingthelargestcontactareapolicytoselectabetterallocationofblocks。\l”b0015”Cho,Chung,Park,Park,andKim(2001)proposedaspatialschedulingsystemforblockpaintingprocessinshipbuilding,includingblockscheduling,fourarrangementalgorithmsandblockassignmentalgorithm。Parketal.(2002)extendedShin,Kwon,andRyu(2008)proposedabottom—left-fillheuristicmethodforspatialplanningofblockassembliesandsuggestedaplacementalgorithmforblocksbydifferentialevolutionarrangementalgorithm.b0050”Liu,Chua,andWee(2011)proposedasimulationmodelwhichenabledmultiplepriorityrulestobecompared。HYPERLINK”http:///science/article/pii/S0360835215002296"\l”b0080”Zheng,Jiang,andChen(2012)proposedamathematicalprogrammingmodelforspatialschedulingandusedseveralheuristicspatialschedulingstrategies(gridsearchingandgeneticalgorithm)。b0075”ZhangandChen(2012)proposedanothermathematicalprogrammingmodelandproposedtheagglomerationalgorithm.Thisstudypresentsanovelmixedintegerprogramming(MIP)formulationtoconsiderblockrotations,symmetricalblocks,pre-existingblocks,loadbalancingandallocationofcertainblockstopre—determinedworkspace.TheproposedMIPmodelswereimplementedbycommerciallyavailablesoftware,LINGO?andproblemsofvarioussizesaretested.ThecomputationalresultsshowthattheMIPmodelisextremelydifficulttosolveasthesizeofproblemsgrows。Toefficientlysolvetheproblem,atwo—stageheuristicalgorithmhasbeenproposed。Section2describesspatialschedulingproblemsandassumptionswhichareusedinthisstudy。Section3presentsamixedintegerprogrammingformulation.InSections0035"5。TheconclusionsaregiveninSections0040”6。2.ProblemdescriptionsTheshipdesigndecideshowtodividetheshipintomanysmallerpieces.Themetalsheetsarecut,blast,bendandweldtobuildsmallblocks。Thesesmallblocksareassembledtobiggerassemblyblocks.Duringthisshipbuildingprocess,allblockshavetheirearlieststartingtimeswhicharedeterminedfromthepreviousoperationalstepandduedateswhicharerequiredbythenextoperationalstep.Ateachstep,theblockshavetheirownshapesofvarioussizesandhandlingrequirements.Duringtheassembly,noblockcanoverlapphysicallywithothersoroverhangtheboundaryofworkplace.Thespatialschedulingproblemcanbedefinedasaproblemtodeterminetheoptimalscheduleofagivensetofblocksandthelayoutofworkplacesbydesignatingtheblocks’workplacesimultaneously。Asthetermimplies,spatialschedulingpursuestheoptimaldynamicspatiallayoutschedulewhichcanalsosatisfytraditionalschedulingconstraints.Dynamicspatiallayoutschedulecanbeincludingthespatialallocationissue,temporalallocationissueandresourceallocationissue.AnexampleofspatialschedulingisgiveninHYPERLINK”/science/article/pii/S0360835215002296"\l”f0010”Fig.2。Thereare4blockstobeallocatedandscheduledinarectangularworkplace。Eachblockisshadedindifferentpatterns。HYPERLINK”http:///science/article/pii/S0360835215002296”\l”f0010"Fig。2showsthe6—dayspatialscheduleoffourlargeblocksonagivenworkplace。Blocks1and2arepre—existedorallocatedatday1.Theearlieststartingtimesofblocks3and4aredays2and4,respectively.Theprocessingtimesofblocks1,2and3are4,2and4

days,respectively。Thespatialschedulemustsatisfythetimeandspaceconstraintsatthesametime.Therearemanyobjectivesinspatialscheduling,includingtheminimizationofmakespan,theminimumtardiness,themaximumutilizationofspatialandnon-spatialresourcesandetc.Theobjectiveinthisstudyistominimizethemakespanandbalancetheworkloadovertheworkspaces。Therearemanyconstraintsforspatialschedulingproblemsinshipbuilding,dependingonthetypesofshipsbuilt,theoperationalstrategiesoftheshop,organizationalrestrictionsandetc.Somebasicconstraintsaregivenasfollows;(1)allblocksmustbeallocatedongivenworkplacesforassemblyprocessesandmustnotoversteptheboundaryoftheworkplace;(2)anyblockcannotoverlapwithotherblocks;(3)allblockshavetheirownearlieststartingtimeandduedates;(4)symmetricalblocksneedstobeplacedside-by—sideinthesameworkspace.\l”f0015"Fig。3showshowsymmetricalblocksneedtobeassigned;(5)someblocksneedtobeplacedinthedesignatedworkspace;(6)therecanbeexistingblocksbeforetheplanninghorizon;(7)workloadsforworkplacesneedstobebalancedasmuchaspossible。Inadditiontotheconstraintsdescribedabove,thefollowingassumptionsaremade。(1)Theshapeofblocksandworkplacesisrectangular。(2)Onceablockisplacedinaworkplace,itcannotbemovedorremovedfromitslocationuntiltheprocessiscompleted.(3)Blockscanberotatedatanglesof0°and90°(see\l”f0020"Fig.4)。(4)Thesymmetricblockshavethesamesizes,arerotatedatthesameangleandshouldbeplacedside-by-sideonthesameworkplace。(5)Thenon—spatialresources(suchaspersonnelorequipment)areadequate。3。AmixedintegerprogrammingmodelAMIPmodelisformulatedandgiveninthissection.Theobjectivefunctionistominimizemakespanandthesumofdeviationfromaverageworkloadperworkplace,consideringtheblockrotation,thesymmetricalblocks,pre—existingblocks,loadbalancingandtheallocationofcertainblockstopre—determinedworkspace。AworkspacewiththelengthLENWandthewidthWIDWisconsideredtwo-dimensionalrectangularspace.Sincetherectangularshapesfortheblockshavebeenassumed,ablockcanbeplacedonworkspacebydetermining(x,y)coordinates,where0

?

x

?

LENWand0

?

y

?

WIDW。Hence,thedynamiclayoutofblocksonworkplacesissimilartotwo-dimensionalbinpackingproblem。Inadditiontotheblockallocation,theoptimalscheduleneedstobeconsideredatthesametimeinspatialschedulingproblems。Zaxisisintroducedtodescribethetimedimension.Then,spatialschedulingproblembecomesathree—dimensionalbinpackingproblemwithvariousobjectivesandconstraints。Thedecisionvariablesofspatialschedulingproblemare(x,y,z)coordinatesofallblockswithinathree—dimensionalspacewhosesizesareLENW,WIDWandTinx,yandzaxes,whereTrepresentstheplanninghorizon.Thisspaceisillustratedinf0025”Fig。5。Inf0030”Fig。6,thespatialschedulingoftwoblocksintoaworkplaceisillustratedasanexample。Theparametersp1andp2indicatetheprocessingtimesforBlocks1and2,respectively.Asshowninzaxis,Block2isscheduledafterBlock1iscompleted。4。Atwo-stageheuristicalgorithmThecomputationalexperimentsfortheMIPmodelinSection\l”s0015”3havebeenconductedusingacommerciallyavailablesolver,LINGO?.Obtainingglobaloptimumsolutionsisverytimeconsuming,consideringthenumberofvariablesandconstraints。Ashipisconsistedofmorethan8hundredlargeblocksandthesizeofproblemusingMIPmodelisbeyondtoday’scomputationalability.Atwo-stageheuristicalgorithmhasbeenproposedusingthedispatchingpriorityrulesandadiagonalfillmethod。4.1。Stage1:LoadbalancingandsequencingPastresearchonspatialschedulingproblemsconsidersvariouspriorityrules。\l”b0045”Leeetal.(1996)usedapriorityrulefortheminimumslacktimeofblocks.HYPERLINK”/science/article/pii/S0360835215002296"\l”b0015”Choetal.(2001)andParketal.(2002)usedtheearliestduedate.HYPERLINK”/science/article/pii/S0360835215002296”Fig。7.Thefirststepofthealgorithminthisstageistogrouptheblocksbasedontheurgencypriority.Theurgencypriorityiscalculatedbysubtractingtheearlieststartingtimeandtheprocessingtimefromtheduedateforeachblock。Thesmallertheurgencypriority,themoreurgenttheblockneedstobedscheduled。Thenallblocksaregroupedintoanappropriatenumberofgroupsforareasonablenumberoflevelsinurgencypriorities.Letgbethisdiscretionarynumberofgroups。Thereareggroupsofblocksbasedontheurgencyofblocks.Thenumberofblocksineachgroupdoesnotneedtobeidentical.Blocksineachgrouparere—orderedgroupedintoasmanysubgroupsasworkplaces,consideringtheworkloadofblockssuchastheweightorweldinglength。Theblocksineachsubgrouphavethesimilarurgencyandworkloads。Then,theseblocksineachsubgroupareorderedinanascendingorderoftheearlieststartingtime.Thisorderingwillbeusedtoblockallocationsinsequence。Thesubgroupcorrespondstotheworkplace。Ifblockimustbeprocessedatworkplacewandiscurrentlyallocatedtootherworkplaceorsubgroupthanw,blockiisswappedwithablockatthesamepositionofblockiinanascendingorderoftheearlieststartingtimeatitsworkplace(orsubgroup)。Sincethesymmetricblocksmustbelocatedonasameworkplace,asimilarswappingmethodcanbeused。Oneofsymmetricblockswhichareallocatedintodifferentworkplace(orsubgroups)needstobeselectedfirst。Inthisstudy,weselectedoneofsymmetricblockswhicheverhasshownupearlierinanascendingorderoftheearlieststartingtimeattheircorrespondingworkplace(orsubgroup).Then,theselectedblockisswappedwithablockatthesamepositionofsymmetricblocksinanascendingorderoftheearlieststartingtimeatitsworkplace(orsubgroups).4。2。Stage2:SpatialallocationOncetheblocksinaworkplace(orsubgroup)aresequentiallyorderedindifferenturgencyprioritygroups,eachblockcanbeassignedtoworkplacesonebyone,andallocatedtoaspecificlocationonaworkplace。Therehasbeenpreviousresearchonheuristicplacementmethods.Thebottom—left(BL)placementmethodwasproposedbyHYPERLINK”http:///science/article/pii/S0360835215002296"\l”b0005”Baker,Coffman,andRivest(1980)andplacesrectanglessequentiallyinabottom—leftmostposition。HYPERLINK”http:///science/article/pii/S0360835215002296”\l”b0030”Jakobs(1996)usedabottom—leftmethodthatiscombinedwithahybridgeneticalgorithm(see\l”f0040”Fig。8).HYPERLINK”http:///science/article/pii/S0360835215002296"\l”b0055”LiuandTeng(1999)developedanextendedbottom-leftheuristicwhichgivesprioritytodownwardmovement,wheretherectanglesisonlyslideleftwardsifnodownwardmovementispossible.b0010"Chazele(1983)proposedthebottom-left—fill(BLF)method,whichsearchesforlowestbottom-leftpoint,holesatthelowestbottom-leftpointandthenplacetherectanglesequentiallyinthatbottom—leftposition.Iftherectangleisnotoverlapped,therectangleisplacedandthepointlistisupdatedtoindicatenewplacementpositions.Iftherectangleisoverlapped,thenextpointinthepointlistisselecteduntiltherectanglecanbeplacedwithoutanyoverlap.HYPERLINK”/science/article/pii/S0360835215002296"\l”b0025”HopperandTurton(2000)madeacomparisonbetweentheBLandBLFmethods。TheyconcludedthattheBLFmethodalgorithmachievesbetterassignmentpatternsthantheBLmethodforHopper’sexampleproblems.Spatialallocationinshipbuildingisdifferentfromtwo-dimensionalpackingproblem.Blockshaveirregularpolygonalshapesinthespatialallocationandblockscontinuouslyappearanddisappearsincetheyhavetheirprocessingtimes。ThisfrequentplacementandremovalofblocksmakesBLFmethodlesseffectiveinspatialallocationoflargeassemblyblock。Inordertosolvethesedrawbacks,wehavemodifiedtheBLFmethodappropriatetospatialschedulingforlargeassemblyblocks.Inaworkplace,sincetheblocksareplacedandremovedcontinuously,itismoreefficienttoconsiderboththebottom—leftandtop—rightpointsofplacedblocksinsteadofbottom-leftpointsonly.Wedenoteitasdiagonalfillplacement(seeHYPERLINK”/science/article/pii/S0360835215002296”Fig。9)。Sincethenumberofpotentialplacementconsiderationsincreases,ittakesabitmoretimetoimplementdiagonalfillbutthecomputationalresultsshowsthatitisnegligible.ThediagonalfillmethodshowsbetterperformancesthantheBLFmethodinspatialschedulingproblems.WhentheBLFmethodisusedinspatialallocation,thealgorithmmakestheallocationofsomeblocksdelayeduntiltheinterferencebypre—positionedblocksareremoved.Itgeneratesalesseffectiveandlessefficientspatialschedule.Theproposeddiagonalfillplacementmethodresolvethisdelaysbetterbyallocatingtheblocksassoonaspossibleinagreedyway,asshowninHYPERLINK”http:///science/article/pii/S0360835215002296"Fig。10。Thepotentialdrawbacksfromthegreedyapproachesisresolvedbyanotherplacementstrategytominimizethepossibledeadspaces,whichwillbeexplainedinthefollowingparagraphs。TheBLFmethodonlyfocusedontwo-dimensionalbinpacking.Frequentremovalandplacementofblocksinaworkspacemayleadtoaccumulationofdeadspaces,whicharesmallandunusablespacesamongblocks.Aminimalpossible—deadspacestrategyhasbeenusedalongwiththeBLFmethod.Possible—deadspacesarebeinggeneratedoverthespatialschedulingandtheyhavelesschancetobeallocatedforfutureblocks。Theminimalpossible—deadspacestrategyminimizesthepotentialdeadspaceafterallocatingthefollowingblocks(HYPERLINK”/science/article/pii/S0360835215002296”\l”b0020”Chung,2001

and

Kohetal。,2008)byconsideringthe0°and90°rotationoftheblockandallocatingthefollowingblockforminimalpossible-deadspace.Fig.11。Consideringtherotationoftheschedulingblocksandtheplacementconsiderationpointsfromthediagonalfillplacementmethods,theschedulingblockswillbefinallyallocated。Inthistwo—stagealgorithm,blockstendtobeplacedadjacenttooneofthealternativeedgesandtheirassignmentsaredonepreferentiallytominimizefracturedspaces。5.ComputationalresultsTodemonstratetheeffectivenessandefficiencyoftheproposedMIPformulationandheuristicalgorithm,theactualdataabout800+largeassemblyblocksfromoneofmajorshipbuildingcompanieshasbeenobtainedandused。Alltestproblemsaregeneratedfromthisreal-worlddata.AllcomputationalexperimentshavebeencarriedoutonapersonalcomputerwithaIntel?Core?i3—2100CPU@3。10

GHzwith2

GBRAM.TheMIPmodelinSection\l”s0015”3hasbeenprogrammedandsolvedusingLINGO?version10。0,acommerciallyavailablesoftwarewhichcansolvelinearandnonlinearmodels.Theproposedtwo—stageheuristicalgorithmhasbeenprogrammedinJAVAprogramminglanguage。Becauseourcomputationaleffortstoobtaintheoptimalsolutionsforevensmallproblemsaremorethansignificant,thecomplexityofSPPcanberecognizedasoneofmostdifficultandtimeconsumingproblems.DependingonthescalingfactorαinobjectivefunctionoftheproposedMIPformulation,theperformanceoftheMIPmodelvariessignificantly.Settingαlessthan0.01makestheloadbalancingcapabilitytobeignoredfromtheoptimalsolutionintheMIPmodel。Forcomputationalexperimentsinthisstudy,theresultswiththescalingfactorsetto0。01isshownanddiscussed。Thevalueneedstobefine-turnedtoobtainthedesirableoutcomes。HYPERLINK”/science/article/pii/S0360835215002296"\l”t0005"Table1showsacomparisonofcomputationalresultsandperformancebetweentheMIPmodelsandtwo-stageheuristicalgorithm。AsshowninTable1,theproposedtwo—stageheuristicalgorithmfindsthenear-optimalsolutionsformediumandlargeproblemsveryquicklywhiletheoptimalMIPmodelswasnotabletosolvetheproblemsofmediumorlargesizesduetothememoryshortageoncomputers。ItisobservedthatthecomputationaltimesfortheMIPproblemsarerapidlygrowingastheproblemsizesincreases.ThetestproblemsinHYPERLINK”http:///science/article/pii/S0360835215002296”a38255。00030。7400。21850––53.7600.719100––133.7802。948200––328。86012。523300––416.06040.154400––532。36073.214Bestfeasiblesolutionafter10

hinGlobalSolverofLINGO?.\o"Full—sizetable—Opensnewwindow"Full-sizetableHYPERLINK”/science/article/pii/S0360835215002296”Tableoptions\l”t0005"\o"Viewinworkspace”ViewinworkspaceHYPERLINK”/science/article/pii/S0360835215002296"\o”DownloadasCSV”DownloadasCSVTheoptimalsolutionsfortestproblemswithmorethan50blocksinHYPERLINK”/science/article/pii/S0360835215002296”\l”t0005"Table1havebeennotobtainedevenafter24

h.Thebestknownfeasiblesolutionsafter10

hforthetestproblemswith20blocksand30blocksarereportedinHYPERLINK”http:///science/article/pii/S0360835215002296”\l”t0005"Table1.ItisobservedthattheLINGO?doesnotsolvethenonlinearconstraintsverywellasshowninHYPERLINK”http:///science/article/pii/S0360835215002296"\l”t0005”Table1。Forverysmallproblemwith10blocks,theLINGO?wasabletoachievetheoptimalsolutions。Forslightlybiggerproblems,theLINGO?tooksignificantlymoretimetofindfeasiblesolutions.Fromthisobservation,theapproachestoobtainthelowerboundthroughtherelaxationmethodandupperboundsaresignificantrequiredinfutureresearch.Incontrary,theproposedtwo—stageheuristicalgorithmwasabletofindthegoodsolutionsveryquickly。Forthesmallesttestproblemwith10blocks,itwasabletofindtheoptimalsolutionaswell.Thecomputationaltimesare1014and0.026s,respectively,fortheMIPapproachandtheproposedalgorithm.Interestingly,theproposedheuristicalgorithmfoundsignificantlybettersolutionsinonly0。078and0。218

s,respectively,forthetestproblemswith20and30blocks。Forthesetwoproblems,theLINGO?generatestheworsesolutionsthantheheuristicsafter10

hofcomputationaltimes。Thesymbol‘–’inHYPERLINK”/science/article/pii/S0360835215002296"\l”f0060”Fig.12showspartialsolutionsoftestproblemswith20and30blockson2workplaces.ThepurposeofHYPERLINK”/science/article/pii/S0360835215002296”Fig.12istoshowtheprogressofproductionplanninggeneratedbythetwo—stageheuristicalgorithm。Twoworkplacesareindifferentsizesof(40,30)and(35,40),respectively.6。ConclusionsAsglobalwarmingisexpectedtoopenanewwaytotransportamongcontinentthroughNorthPoleSeaandtoexpeditetheoceansmoreaggressively,theneedsformoreshipsandoceanplantsareforthcoming。Theshipbuildingindustriescurrentlyfaceincreaseddiversityofassemblyblocksinlimitedproductionshipyard.Spatialschedulingforlargeassemblyblocksholdsthekeyroleinsuccessfuloperationsoftheshipbuildingcompanies.Thetaskofspatialschedulingtakesplaceatalmosteverystageofshipbuildingprocessesandthelargeassemblyshopisoneofthemostcongestedoperationalareasintoday'sshipbuilding。Itisalsoknownthatthespatialschedulingproblemhasbeenthemajorsourceofthebottleneck。Thepractitionersinshipbuildingindustriesrequirestheir

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論