版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版七年級下冊數(shù)學期末解答題綜合復習卷(及答案)一、解答題1.(1)如圖,分別把兩個邊長為的小正方形沿一條對角線裁成個小三角形拼成一個大正方形,則大正方形的邊長為_______;(2)若一個圓的面積與一個正方形的面積都是,設圓的周長為,正方形的周長為,則_____(填“”或“”或“”號);(3)如圖,若正方形的面積為,李明同學想沿這塊正方形邊的方向裁出一塊面積為的長方形紙片,使它的長和寬之比為,他能裁出嗎?請說明理由?2.喜歡探究的亮亮同學拿出形狀分別是長方形和正方形的兩塊紙片,其中長方形紙片的長為,寬為,且兩塊紙片面積相等.(1)亮亮想知道正方形紙片的邊長,請你幫他求出正方形紙片的邊長;(結果保留根號)(2)在長方形紙片上截出兩個完整的正方形紙片,面積分別為和,亮亮認為兩個正方形紙片的面積之和小于長方形紙片的總面積,所以一定能截出符合要求的正方形紙片來,你同意亮亮的見解嗎?為什么?(參考數(shù)據(jù):,)3.觀察下圖,每個小正方形的邊長均為1,(1)圖中陰影部分的面積是多少?邊長是多少?(2)估計邊長的值在哪兩個整數(shù)之間.4.如圖,紙上有五個邊長為1的小正方形組成的圖形紙,我們可以把它剪開拼成一個正方形.(1)拼成的正方形的面積與邊長分別是多少?(2)如圖所示,以數(shù)軸的單位長度的線段為邊作一個直角三角形,以數(shù)軸的-1點為圓心,直角三角形的最大邊為半徑畫弧,交數(shù)軸正半軸于點A,那么點A表示的數(shù)是多少?點A表示的數(shù)的相反數(shù)是多少?(3)你能把十個小正方形組成的圖形紙,剪開并拼成正方形嗎?若能,請畫出示意圖,并求它的邊長5.有一塊正方形鋼板,面積為16平方米.(1)求正方形鋼板的邊長.(2)李師傅準備用它裁剪出一塊面積為12平方米的長方形工件,且要求長寬之比為,問李師傅能辦到嗎?若能,求出長方形的長和寬;若不能,請說明理由.(參考數(shù)據(jù):,).二、解答題6.如圖,直線,一副直角三角板中,.(1)若如圖1擺放,當平分時,證明:平分.(2)若如圖2擺放時,則(3)若圖2中固定,將沿著方向平移,邊與直線相交于點,作和的角平分線相交于點(如圖3),求的度數(shù).(4)若圖2中的周長,現(xiàn)將固定,將沿著方向平移至點與重合,平移后的得到,點的對應點分別是,請直接寫出四邊形的周長.(5)若圖2中固定,(如圖4)將繞點順時針旋轉,分鐘轉半圈,旋轉至與直線首次重合的過程中,當線段與的一條邊平行時,請直接寫出旋轉的時間.7.已知,定點,分別在直線,上,在平行線,之間有一動點.(1)如圖1所示時,試問,,滿足怎樣的數(shù)量關系?并說明理由.(2)除了(1)的結論外,試問,,還可能滿足怎樣的數(shù)量關系?請畫圖并證明(3)當滿足,且,分別平分和,①若,則__________°.②猜想與的數(shù)量關系.(直接寫出結論)8.已知,AB∥CD.點M在AB上,點N在CD上.(1)如圖1中,∠BME、∠E、∠END的數(shù)量關系為:;(不需要證明)如圖2中,∠BMF、∠F、∠FND的數(shù)量關系為:;(不需要證明)(2)如圖3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度數(shù);(3)如圖4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,則∠FEQ的大小是否發(fā)生變化,若變化,請說明理由,若不變化,求出∠FEQ的度數(shù).9.如圖,已知直線射線CD,.P是射線EB上一動點,過點P作PQEC交射線CD于點Q,連接CP.作,交直線AB于點F,CG平分.(1)若點P,F(xiàn),G都在點E的右側,求的度數(shù);(2)若點P,F(xiàn),G都在點E的右側,,求的度數(shù);(3)在點P的運動過程中,是否存在這樣的情形,使?若存在,求出的度數(shù);若不存在,請說明理由.10.已知AB∥CD,線段EF分別與AB,CD相交于點E,F(xiàn).(1)請在橫線上填上合適的內容,完成下面的解答:如圖1,當點P在線段EF上時,已知∠A=35°,∠C=62°,求∠APC的度數(shù);解:過點P作直線PH∥AB,所以∠A=∠APH,依據(jù)是;因為AB∥CD,PH∥AB,所以PH∥CD,依據(jù)是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)當點P,Q在線段EF上移動時(不包括E,F(xiàn)兩點):①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立嗎?請說明理由;②如圖3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,請直接寫出∠M,∠A與∠C的數(shù)量關系.三、解答題11.已知,直角的邊與直線a分別相交于O、G兩點,與直線b分別交于E,F(xiàn)點,且.(1)將直角如圖1位置擺放,如果,則________;(2)將直角如圖2位置擺放,N為上一點,,請寫出與之間的等量關系,并說明理由;(3)將直角如圖3位置擺放,若,延長交直線b于點Q,點P是射線上一動點,探究與的數(shù)量關系,請直接寫出結論.12.課題學習:平行線的“等角轉化”功能.閱讀理解:如圖1,已知點A是BC外一點,連接AB,AC,求∠BAC+∠B+∠C的度數(shù).(1)閱讀并補充下面推理過程解:過點A作ED∥BC,∴∠B=∠EAB,∠C=又∵∠EAB+∠BAC+∠DAC=180°∴∠B+∠BAC+∠C=180°解題反思:從上面推理過程中,我們發(fā)現(xiàn)平行線具有“等角轉化”的功能,將∠BAC,∠B,∠C“湊”在一起,得出角之間的關系,使問題得以解決.方法運用:(2)如圖2,已知AB∥ED,求∠B+∠BCD+∠D的度數(shù).(提示:過點C作CF∥AB)深化拓展:(3)如圖3,已知AB∥CD,點C在點D的右側,∠ADC=70°,點B在點A的左側,∠ABC=60°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直線交于點E,點E在AB與CD兩條平行線之間,求∠BED的度數(shù).13.已知點A,B,O在一條直線上,以點O為端點在直線AB的同一側作射線,,使.(1)如圖①,若平分,求的度數(shù);(2)如圖②,將繞點O按逆時針方向轉動到某個位置時,使得所在射線把分成兩個角.①若,求的度數(shù);②若(n為正整數(shù)),直接用含n的代數(shù)式表示.14.如圖,,平分,設為,點E是射線上的一個動點.(1)若時,且,求的度數(shù);(2)若點E運動到上方,且滿足,,求的值;(3)若,求的度數(shù)(用含n和的代數(shù)式表示).15.如圖1,D是△ABC延長線上的一點,CEAB.(1)求證:∠ACD=∠A+∠B;(2)如圖2,過點A作BC的平行線交CE于點H,CF平分∠ECD,F(xiàn)A平分∠HAD,若∠BAD=70°,求∠F的度數(shù).(3)如圖3,AHBD,G為CD上一點,Q為AC上一點,GR平分∠QGD交AH于R,QN平分∠AQG交AH于N,QMGR,猜想∠MQN與∠ACB的關系,說明理由.四、解答題16.在△ABC中,射線AG平分∠BAC交BC于點G,點D在BC邊上運動(不與點G重合),過點D作DE∥AC交AB于點E.(1)如圖1,點D在線段CG上運動時,DF平分∠EDB①若∠BAC=100°,∠C=30°,則∠AFD=;若∠B=40°,則∠AFD=;②試探究∠AFD與∠B之間的數(shù)量關系?請說明理由;(2)點D在線段BG上運動時,∠BDE的角平分線所在直線與射線AG交于點F試探究∠AFD與∠B之間的數(shù)量關系,并說明理由17.在中,射線平分交于點,點在邊上運動(不與點重合),過點作交于點.(1)如圖1,點在線段上運動時,平分.①若,,則_____;若,則_____;②試探究與之間的數(shù)量關系?請說明理由;(2)點在線段上運動時,的角平分線所在直線與射線交于點.試探究與之間的數(shù)量關系,并說明理由.18.操作示例:如圖1,在△ABC中,AD為BC邊上的中線,△ABD的面積記為S1,△ADC的面積記為S2.則S1=S2.解決問題:在圖2中,點D、E分別是邊AB、BC的中點,若△BDE的面積為2,則四邊形ADEC的面積為.拓展延伸:(1)如圖3,在△ABC中,點D在邊BC上,且BD=2CD,△ABD的面積記為S1,△ADC的面積記為S2.則S1與S2之間的數(shù)量關系為.(2)如圖4,在△ABC中,點D、E分別在邊AB、AC上,連接BE、CD交于點O,且BO=2EO,CO=DO,若△BOC的面積為3,則四邊形ADOE的面積為.19.互動學習課堂上某小組同學對一個課題展開了探究.小亮:已知,如圖三角形,點是三角形內一點,連接,,試探究與,,之間的關系.小明:可以用三角形內角和定理去解決.小麗:用外角的相關結論也能解決.(1)請你在橫線上補全小明的探究過程:∵,(______)∴,(等式性質)∵,∴,∴.(______)(2)請你按照小麗的思路完成探究過程;(3)利用探究的結果,解決下列問題:①如圖①,在凹四邊形中,,,求______;②如圖②,在凹四邊形中,與的角平分線交于點,,,則______;③如圖③,,的十等分線相交于點、、、…、,若,,則的度數(shù)為______;④如圖④,,的角平分線交于點,則,與之間的數(shù)量關系是______;⑤如圖⑤,,的角平分線交于點,,,求的度數(shù).20.閱讀下列材料并解答問題:在一個三角形中,如果一個內角的度數(shù)是另一個內角度數(shù)的3倍,那么這樣的三角形我們稱為“夢想三角形”例如:一個三角形三個內角的度數(shù)分別是120°,40°,20°,這個三角形就是一個“夢想三角形”.反之,若一個三角形是“夢想三角形”,那么這個三角形的三個內角中一定有一個內角的度數(shù)是另一個內角度數(shù)的3倍.(1)如果一個“夢想三角形”有一個角為108°,那么這個“夢想三角形”的最小內角的度數(shù)為__________(2)如圖1,已知∠MON=60°,在射線OM上取一點A,過點A作AB⊥OM交ON于點B,以A為端點作射線AD,交線段OB于點C(點C不與O、B重合),若∠ACB=80°.判定△AOB、△AOC是否是“夢想三角形”,為什么?(3)如圖2,點D在△ABC的邊上,連接DC,作∠ADC的平分線交AC于點E,在DC上取一點F,使得∠EFC+∠BDC=180°,∠DEF=∠B.若△BCD是“夢想三角形”,求∠B的度數(shù).【參考答案】一、解答題1.(1);(2);(3)不能裁剪出,詳見解析【分析】(1)根據(jù)所拼成的大正方形的面積為2即可求得大正方形的邊長;(2)由圓和正方形的面積公式可分別求的圓的半徑及正方形的邊長,進而可求得圓和正方形解析:(1);(2);(3)不能裁剪出,詳見解析【分析】(1)根據(jù)所拼成的大正方形的面積為2即可求得大正方形的邊長;(2)由圓和正方形的面積公式可分別求的圓的半徑及正方形的邊長,進而可求得圓和正方形的周長,利用作商法比較這兩數(shù)大小即可;(3)利用方程思想求出長方形的長邊,與正方形邊長比較大小即可;【詳解】解:(1)∵小正方形的邊長為1cm,∴小正方形的面積為1cm2,∴兩個小正方形的面積之和為2cm2,即所拼成的大正方形的面積為2cm2,∴大正方形的邊長為cm,(2)∵,∴,∴,設正方形的邊長為a∵,∴,∴,∴故答案為:<;(3)解:不能裁剪出,理由如下:∵長方形紙片的長和寬之比為,∴設長方形紙片的長為,寬為,則,整理得:,∴,∵450>400,∴,∴,∴長方形紙片的長大于正方形的邊長,∴不能裁出這樣的長方形紙片.【點睛】本題通過圓和正方形的面積考查了對算術平方根的應用,主要是對學生無理數(shù)運算及比較大小進行了考查.2.(1);(2)不同意,理由見解析【分析】(1)設正方形邊長為,根據(jù)兩塊紙片面積相等列出方程,再根據(jù)算術平方根的意義即可求出x的值;(2)根據(jù)兩個正方形紙片的面積計算出兩個正方形的邊長,計算兩個解析:(1);(2)不同意,理由見解析【分析】(1)設正方形邊長為,根據(jù)兩塊紙片面積相等列出方程,再根據(jù)算術平方根的意義即可求出x的值;(2)根據(jù)兩個正方形紙片的面積計算出兩個正方形的邊長,計算兩個正方形邊長的和,并與3比較即可解答.【詳解】解:(1)設正方形邊長為,則,由算術平方根的意義可知,所以正方形的邊長是.(2)不同意.因為:兩個小正方形的面積分別為和,則它們的邊長分別為和.,即兩個正方形邊長的和約為,所以,即兩個正方形邊長的和大于長方形的長,所以不能在長方形紙片上截出兩個完整的面積分別為和的正方形紙片.【點睛】本題考查了算術平方根的應用,解題的關鍵是讀懂題意并熟知算術平方根的概念.3.(1)圖中陰影部分的面積17,邊長是;(2)邊長的值在4與5之間【分析】(1)由圖形可以得到陰影正方形的面積等于原來大正方形的面積減去周圍四個直角三角形的面積,由正方形的面積等于邊長乘以邊長,可解析:(1)圖中陰影部分的面積17,邊長是;(2)邊長的值在4與5之間【分析】(1)由圖形可以得到陰影正方形的面積等于原來大正方形的面積減去周圍四個直角三角形的面積,由正方形的面積等于邊長乘以邊長,可以得到陰影正方形的邊長;(2)根據(jù),可以估算出邊長的值在哪兩個整數(shù)之間.【詳解】(1)由圖可知,圖中陰影正方形的面積是:5×5?=17則陰影正方形的邊長為:答:圖中陰影部分的面積17,邊長是(2)∵所以4<<5∴邊長的值在4與5之間;【點睛】本題主要考查了無理數(shù)的估算及算術平方根的定義,解題主要利用了勾股定理和正方形的面積求解,有一定的綜合性,解題關鍵是無理數(shù)的估算.4.(1)5;;(2);;(3)能,.【分析】(1)易得5個小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術平方根即可為大正方形的邊長.(2)求出斜邊長即可.(3)一共有10個小正解析:(1)5;;(2);;(3)能,.【分析】(1)易得5個小正方形的面積的和,那么就得到了大正方形的面積,求得面積的算術平方根即可為大正方形的邊長.(2)求出斜邊長即可.(3)一共有10個小正方形,那么組成的大正方形的面積為10,邊長為10的算術平方根,畫圖.【詳解】試題分析:解:(1)拼成的正方形的面積與原面積相等1×1×5=5,邊長為,如圖(1)(2)斜邊長=,故點A表示的數(shù)為:;點A表示的相反數(shù)為:(3)能,如圖拼成的正方形的面積與原面積相等1×1×10=10,邊長為.考點:1.作圖—應用與設計作圖;2.圖形的剪拼.5.(1)4米(2)見解析【分析】(1)根據(jù)正方形邊長與面積間的關系求解即可;(2)設長方形的長寬分別為米、米,由其面積可得x值,比較長方形的長和寬與正方形邊長的大小可得結論.【詳解】解解析:(1)4米(2)見解析【分析】(1)根據(jù)正方形邊長與面積間的關系求解即可;(2)設長方形的長寬分別為米、米,由其面積可得x值,比較長方形的長和寬與正方形邊長的大小可得結論.【詳解】解:(1)正方形的面積是16平方米,正方形鋼板的邊長是米;(2)設長方形的長寬分別為米、米,則,,,,,長方形長是米,而正方形的邊長為4米,所以李師傅不能辦到.【點睛】本題考查了算術平方根的實際應用,靈活的利用算術平方根表示正方形和長方形的邊長是解題的關鍵.二、解答題6.(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運用角平分線定義及平行線性質即可證得結論;(2)如圖2,過點E作EK∥MN,利用平行線性解析:(1)見詳解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)運用角平分線定義及平行線性質即可證得結論;(2)如圖2,過點E作EK∥MN,利用平行線性質即可求得答案;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,運用平行線性質和角平分線定義即可得出答案;(4)根據(jù)平移性質可得D′A=DF,DD′=EE′=AF=5cm,再結合DE+EF+DF=35cm,可得出答案;(5)設旋轉時間為t秒,由題意旋轉速度為1分鐘轉半圈,即每秒轉3°,分三種情況:①當BC∥DE時,②當BC∥EF時,③當BC∥DF時,分別求出旋轉角度后,列方程求解即可.【詳解】(1)如圖1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°?∠PEF=180°?120°=60°,∴∠MFD=∠MFE?∠DFE=60°?30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如圖2,過點E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF?∠KEA,又∵∠DEF=60°.∴∠PDE=60°?45°=15°,故答案為:15°;(3)如圖3,分別過點F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA?∠LFA,∵∠FGQ和∠GFA的角平分線GH、FH相交于點H,∴∠QGH=∠FGQ,∠HFA=∠GFA,∵∠DFE=30°,∴∠GFA=180°?∠DFE=150°,∴∠HFA=∠GFA=75°,∴∠RHF=∠HFL=∠HFA?∠LFA=75°?45°=30°,∴∠GFL=∠GFA?∠LFA=150°?45°=105°,∴∠RHG=∠QGH=∠FGQ=(180°?105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如圖4,∵將△DEF沿著CA方向平移至點F與A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四邊形DEAD′的周長為45cm;(5)設旋轉時間為t秒,由題意旋轉速度為1分鐘轉半圈,即每秒轉3°,分三種情況:BC∥DE時,如圖5,此時AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF時,如圖6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF時,如圖7,延長BC交MN于K,延長DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°?∠ACB=90°,∴∠CAK=90°?∠BKA=15°,∴∠CAE=180°?∠EAM?∠CAK=180°?45°?15°=120°,∴3t=120,解得:t=40,綜上所述,△ABC繞點A順時針旋轉的時間為10s或30s或40s時,線段BC與△DEF的一條邊平行.【點睛】本題主要考查了平行線性質及判定,角平分線定義,平移的性質等,添加輔助線,利用平行線性質是解題關鍵.7.(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點是平行線,之間解析:(1)∠AEP+∠PFC=∠EPF;(2)∠AEP+∠EPF+∠PFC=360°;(3)①150°或30;②∠EPF+2∠EQF=360°或∠EPF=2∠EQF【分析】(1)由于點是平行線,之間有一動點,因此需要對點的位置進行分類討論:如圖1,當點在的左側時,,,滿足數(shù)量關系為:;(2)當點在的右側時,,,滿足數(shù)量關系為:;(3)①若當點在的左側時,;當點在的右側時,可求得;②結合①可得,由,得出;可得,由,得出.【詳解】解:(1)如圖1,過點作,,,,,,;(2)如圖2,當點在的右側時,,,滿足數(shù)量關系為:;過點作,,,,,,;(3)①如圖3,若當點在的左側時,,,,分別平分和,,,;如圖4,當點在的右側時,,,;故答案為:或30;②由①可知:,;,.綜合以上可得與的數(shù)量關系為:或.【點睛】本題主要考查了平行線的性質,平行公理和及推論等知識點,作輔助線后能求出各個角的度數(shù),是解此題的關鍵.8.(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線的性質可求解;過F作FH∥AB解析:(1)∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND;(2)120°;(3)不變,30°【分析】(1)過E作EH∥AB,易得EH∥AB∥CD,根據(jù)平行線的性質可求解;過F作FH∥AB,易得FH∥AB∥CD,根據(jù)平行線的性質可求解;(2)根據(jù)(1)的結論及角平分線的定義可得2(∠BME+∠END)+∠BMF-∠FND=180°,可求解∠BMF=60°,進而可求解;(3)根據(jù)平行線的性質及角平分線的定義可推知∠FEQ=∠BME,進而可求解.【詳解】解:(1)過E作EH∥AB,如圖1,∴∠BME=∠MEH,∵AB∥CD,∴HE∥CD,∴∠END=∠HEN,∴∠MEN=∠MEH+∠HEN=∠BME+∠END,即∠BME=∠MEN﹣∠END.如圖2,過F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案為∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小沒發(fā)生變化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.【點睛】本題主要考查平行線的性質及角平分線的定義,作平行線的輔助線是解題的關鍵.9.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依據(jù)平行線的性質以及角平分線的定義,即可得到∠PCG的度數(shù);(2)依據(jù)平行線的性質以及角平分線的定義,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依據(jù)平行線的性質以及角平分線的定義,即可得到∠PCG的度數(shù);(2)依據(jù)平行線的性質以及角平分線的定義,即可得到∠ECG=∠GCF=25°,再根據(jù)PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)設∠EGC=4x,∠EFC=3x,則∠GCF=4x-3x=x,分兩種情況討論:①當點G、F在點E的右側時,②當點G、F在點E的左側時,依據(jù)等量關系列方程求解即可.【詳解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)設∠EGC=4x,∠EFC=3x,則∠GCF=∠FCD=4x-3x=x,①當點G、F在點E的右側時,則∠ECG=x,∠PCF=∠PCD=x,∵∠ECD=80°,∴x+x+x+x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+x=56°;②當點G、F在點E的左側時,則∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【點睛】本題主要考查了平行線的性質,解題時注意:兩直線平行,同旁內角互補;兩直線平行,內錯角相等.10.(1)兩直線平行,內錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由見解答過程;②3∠PMQ+∠A+∠C=360°.解析:(1)兩直線平行,內錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①∠APQ+∠PQC=∠A+∠C+180°成立,理由見解答過程;②3∠PMQ+∠A+∠C=360°.【分析】(1)根據(jù)平行線的判定與性質即可完成填空;(2)結合(1)的輔助線方法即可完成證明;(3)結合(1)(2)的方法,根據(jù)∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,即可證明∠PMQ,∠A與∠C的數(shù)量關系.【詳解】解:過點P作直線PH∥AB,所以∠A=∠APH,依據(jù)是兩直線平行,內錯角相等;因為AB∥CD,PH∥AB,所以PH∥CD,依據(jù)是平行于同一條直線的兩條直線平行;所以∠C=(∠CPH),所以∠APC=(∠APH)+(∠CPH)=∠A+∠C=97°.故答案為:兩直線平行,內錯角相等;平行于同一條直線的兩條直線平行;∠CPH;∠APH,∠CPH;(2)①如圖2,∠APQ+∠PQC=∠A+∠C+180°成立,理由如下:過點P作直線PH∥AB,QG∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∴∠APQ+∠PQC=∠APH+∠HPQ+∠GQP+∠CQG=∠A+∠C+180°.∴∠APQ+∠PQC=∠A+∠C+180°成立;②如圖3,過點P作直線PH∥AB,QG∥AB,MN∥AB,∵AB∥CD,∴AB∥CD∥PH∥QG∥MN,∴∠A=∠APH,∠C=∠CQG,∠HPQ+∠GQP=180°,∠HPM=∠PMN,∠GQM=∠QMN,∴∠PMQ=∠HPM+∠GQM,∵∠APM=2∠MPQ,∠CQM=2∠MQP,∠PMQ+∠MPQ+∠PQM=180°,∴∠APM+∠CQM=∠A+∠C+∠PMQ=2∠MPQ+2∠MQP=2(180°﹣∠PMQ),∴3∠PMQ+∠A+∠C=360°.【點睛】考核知識點:平行線的判定和性質.熟練運用平行線性質和判定,添加適當輔助線是關鍵.三、解答題11.(1)146°;(2)∠AOG+∠NEF=90°;(3)見解析【分析】(1)作CP//a,則CP//a//b,根據(jù)平行線的性質求解.(2)作CP//a,由平行線的性質及等量代換得∠AOG+∠N解析:(1)146°;(2)∠AOG+∠NEF=90°;(3)見解析【分析】(1)作CP//a,則CP//a//b,根據(jù)平行線的性質求解.(2)作CP//a,由平行線的性質及等量代換得∠AOG+∠NEF=∠ACP+∠PCB=90°.(3)分類討論點P在線段GF上或線段GF延長線上兩種情況,過點P作a,b的平行線求解.【詳解】解:(1)如圖,作CP//a,∵a//b,CP//a,∴CP//a//b,∴∠AOG=∠ACP=56°,∠BCP+∠CEF=180°,∴∠BCP=180°-∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°-∠CEF=90°,∴∠CEF=180°-90°+∠AOG=146°.(2)∠AOG+∠NEF=90°.理由如下:如圖,作CP//a,則CP//a//b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∵∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°.(3)如圖,當點P在GF上時,作PN//a,連接PQ,OP,則PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠OPN+∠NPQ=∠GOP+∠PQF,∵∠GOC=∠GOP+∠POQ=135°,∴∠GOP=135°-∠POQ,∴∠OPQ=135°-∠POQ+∠PQF.如圖,當點P在GF延長線上時,作PN//a,連接PQ,OP,則PN//a//b,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴135°-∠POQ=∠OPQ+∠PQF.【點睛】本題考查平行線的性質的應用,解題關鍵是熟練掌握平行線的性質,通過添加輔助線及分類討論的方法求解.12.(1)∠DAC;(2)360°;(3)65°【分析】(1)根據(jù)平行線的性質即可得到結論;(2)過C作CF∥AB根據(jù)平行線的性質得到∠D=∠FCD,∠B=∠BCF,然后根據(jù)已知條件即可得到結論;解析:(1)∠DAC;(2)360°;(3)65°【分析】(1)根據(jù)平行線的性質即可得到結論;(2)過C作CF∥AB根據(jù)平行線的性質得到∠D=∠FCD,∠B=∠BCF,然后根據(jù)已知條件即可得到結論;(3)過點E作EF∥AB,然后根據(jù)兩直線平行內錯角相等,即可求∠BED的度數(shù).【詳解】解:(1)過點A作ED∥BC,∴∠B=∠EAB,∠C=∠DCA,又∵∠EAB+∠BAC+∠DAC=180°,∴∠B+∠BAC+∠C=180°.故答案為:∠DAC;(2)過C作CF∥AB,∵AB∥DE,∴CF∥DE,∴∠D=∠FCD,∵CF∥AB,∴∠B=∠BCF,∵∠BCF+∠BCD+∠DCF=360°,∴∠B+∠BCD+∠D=360°;(3)如圖3,過點E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠ABE=∠BEF,∠CDE=∠DEF,∵BE平分∠ABC,DE平分∠ADC,∠ABC=60°,∠ADC=70°,∴∠ABE=∠ABC=30°,∠CDE=∠ADC=35°,∴∠BED=∠BEF+∠DEF=30°+35°=65°.【點睛】此題考查了平行線的判定與性質,解題的關鍵是正確添加輔助線,利用平行線的性質進行推算.13.(1);(2)①;②.【分析】(1)依據(jù)角平分線的定義可求得,再依據(jù)角的和差依次可求得和,根據(jù)鄰補角的性質可求得結論;(2)①根據(jù)角相等和角的和差可得∠EOC=∠BOD,再根據(jù)比例關系可得,最解析:(1);(2)①;②.【分析】(1)依據(jù)角平分線的定義可求得,再依據(jù)角的和差依次可求得和,根據(jù)鄰補角的性質可求得結論;(2)①根據(jù)角相等和角的和差可得∠EOC=∠BOD,再根據(jù)比例關系可得,最后依據(jù)角的和差和鄰補角的性質可求得結論;②根據(jù)角相等和角的和差可得∠EOC=∠BOD,再根據(jù)比例關系可得,最后依據(jù)角的和差和鄰補角的性質可求得結論.【詳解】解:(1)∵平分,,∴,∴,∴,∴;(2)①∵,∴∠EOC+∠COD=∠BOD+∠COD,∴∠EOC=∠BOD,∵,,∴,∴,∴,∴;②∵,∴∠EOC+∠COD=∠BOD+∠COD,∴∠EOC=∠BOD,∵,,∴,∴,∴,∴.【點睛】本題考查鄰補角的計算,角的和差,角平分線的有關計算.能正確識圖,利用角的和差求得相應角的度數(shù)是解題關鍵.14.(1)60°;(2)50°;(3)或【分析】(1)根據(jù)平行線的性質可得的度數(shù),再根據(jù)角平分線的性質可得的度數(shù),應用三角形內角和計算的度數(shù),由已知條件,可計算出的度數(shù);(2)根據(jù)題意畫出圖形,先解析:(1)60°;(2)50°;(3)或【分析】(1)根據(jù)平行線的性質可得的度數(shù),再根據(jù)角平分線的性質可得的度數(shù),應用三角形內角和計算的度數(shù),由已知條件,可計算出的度數(shù);(2)根據(jù)題意畫出圖形,先根據(jù)可計算出的度數(shù),由可計算出的度數(shù),再根據(jù)平行線的性質和角平分線的性質,計算出的度數(shù),即可得出結論;(3)根據(jù)題意可分兩種情況,①若點運動到上方,根據(jù)平行線的性質由可計算出的度數(shù),再根據(jù)角平分線的性質和平行線的性質,計算出的度數(shù),再,,列出等量關系求解即可等處結論;②若點運動到下方,根據(jù)平行線的性質由可計算出的度數(shù),再根據(jù)角平分線的性質和平行線的性質,計算出的度數(shù),再,列出等量關系求解即可等處結論.【詳解】解:(1),,,平分,,,又,;(2)根據(jù)題意畫圖,如圖1所示,,,,,,,又平分,,;(3)①如圖2所示,,,平分,,,又,,,解得;②如圖3所示,,,平分,,,又,,,解得.綜上的度數(shù)為或.【點睛】本題主要考查平行線的性質和角平分線的性質,兩直線平行,同位角相等.兩直線平行,同旁內角互補.
兩直線平行,內錯角相等.合理應用平行線的性質是解決本題的關鍵.15.(1)證明見解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由見解析.【分析】(1)首先根據(jù)平行線的性質得出∠ACE=∠A,∠ECD=∠B,然后通過等量代換即可得出答案;(2)首先根據(jù)角解析:(1)證明見解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由見解析.【分析】(1)首先根據(jù)平行線的性質得出∠ACE=∠A,∠ECD=∠B,然后通過等量代換即可得出答案;(2)首先根據(jù)角平分線的定義得出∠FCD=∠ECD,∠HAF=∠HAD,進而得出∠F=(∠HAD+∠ECD),然后根據(jù)平行線的性質得出∠HAD+∠ECD的度數(shù),進而可得出答案;(3)根據(jù)平行線的性質及角平分線的定義得出,,,再通過等量代換即可得出∠MQN=∠ACB.【詳解】解:(1)∵CEAB,∴∠ACE=∠A,∠ECD=∠B,∵∠ACD=∠ACE+∠ECD,∴∠ACD=∠A+∠B;(2)∵CF平分∠ECD,F(xiàn)A平分∠HAD,∴∠FCD=∠ECD,∠HAF=∠HAD,∴∠F=∠HAD+∠ECD=(∠HAD+∠ECD),∵CHAB,∴∠ECD=∠B,∵AHBC,∴∠B+∠HAB=180°,∵∠BAD=70°,,∴∠F=(∠B+∠HAD)=55°;(3)∠MQN=∠ACB,理由如下:平分,.平分,.,.∴∠MQN=∠MQG﹣∠NQG=180°﹣∠QGR﹣∠NQG=180°﹣(∠AQG+∠QGD)=180°﹣(180°﹣∠CQG+180°﹣∠QGC)=(∠CQG+∠QGC)=∠ACB.【點睛】本題主要考查平行線的性質和角平分線的定義,掌握平行線的性質和角平分線的定義是解題的關鍵.四、解答題16.(1)①115°;110°;②;理由見解析;(2);理由見解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內角和定理求出∠B=50°,由平行線的性質得出∠EDB=∠C=30°,由解析:(1)①115°;110°;②;理由見解析;(2);理由見解析【分析】(1)①若∠BAC=100°,∠C=30°,由三角形內角和定理求出∠B=50°,由平行線的性質得出∠EDB=∠C=30°,由角平分線定義得出,,由三角形的外角性質得出∠DGF=100°,再由三角形的外角性質即可得出結果;若∠B=40°,則∠BAC+∠C=180°-40°=140°,由角平分線定義得出,,由三角形的外角性質即可得出結果;②由①得:∠EDB=∠C,,,由三角形的外角性質得出∠DGF=∠B+∠BAG,再由三角形的外角性質即可得出結論;(2)由(1)得:∠EDB=∠C,,,由三角形的外角性質和三角形內角和定理即可得出結論.【詳解】(1)①若∠BAC=100°,∠C=30°,則∠B=180°-100°-30°=50°,∵DE∥AC,∴∠EDB=∠C=30°,∵AG平分∠BAC,DF平分∠EDB,∴,,∴∠DGF=∠B+∠BAG=50°+50°=100°,∴∠AFD=∠DGF+∠FDG=100°+15°=115°;若∠B=40°,則∠BAC+∠C=180°-40°=140°,∵AG平分∠BAC,DF平分∠EDB,∴,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=故答案為:115°;110°;②;理由如下:由①得:∠EDB=∠C,,,∵∠DGF=∠B+∠BAG,∴∠AFD=∠DGF+∠FDG=∠B+∠BAG+∠FDG=;(2)如圖2所示:;理由如下:由(1)得:∠EDB=∠C,,,∵∠AHF=∠B+∠BDH,∴∠AFD=180°-∠BAG-∠AHF.【點睛】本題考查了三角形內角和定理、三角形的外角性質、平行線的性質等知識;熟練掌握三角形內角和定理和三角形的外角性質是解題的關鍵.17.(1)①115°,110°;②,證明見解析;(2),證明見解析.【解析】【分析】(1)①根據(jù)角平分線的定義求得∠CAG=∠BAC=50°;再由平行線的性質可得∠EDG=∠C=30°,∠FMD=解析:(1)①115°,110°;②,證明見解析;(2),證明見解析.【解析】【分析】(1)①根據(jù)角平分線的定義求得∠CAG=∠BAC=50°;再由平行線的性質可得∠EDG=∠C=30°,∠FMD=∠GAC=50°;由三角形的內角和定理求得∠AFD的度數(shù)即可;已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線的性質可得∠EDG=∠C,∠FMD=∠GAC;即可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;再由三角形的內角和定理可求得∠AFD=110°;②∠AFD=90°+∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠FDM=∠EDG;由DE//AC,根據(jù)平行線的性質可得∠EDG=∠C,∠FMD=∠GAC;由此可得∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形的內角和定理可得∠AFD=90°+∠B;(2)∠AFD=90°-∠B,已知AG平分∠BAC,DF平分∠EDB,根據(jù)角平分線的定義可得∠CAG=∠BAC,∠NDE=∠EDB,即可得∠FDM=∠NDE=∠EDB;由DE//AC,根據(jù)平行線的性質可得∠EDB=∠C,∠FMD=∠GAC;即可得到∠FDM=∠NDE=∠C,所以∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;再由三角形外角的性質可得∠AFD=∠FDM+∠FMD=90°-∠B.【詳解】(1)①∵AG平分∠BAC,∠BAC=100°,∴∠CAG=∠BAC=50°;∵,∠C=30°,∴∠EDG=∠C=30°,∠FMD=∠GAC=50°;∵DF平分∠EDB,∴∠FDM=∠EDG=15°;∴∠AFD=180°-∠FMD-∠FDM=180°-50°-15°=115°;∵∠B=40°,∴∠BAC+∠C=180°-∠B=140°;∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×140°=70°;∴∠AFD=180°-(∠FDM+∠FMD)=180°-70°=110°;故答案為115°,110°;②∠AFD=90°+∠B,理由如下:∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠FDM=∠EDG,∵DE//AC,∴∠EDG=∠C,∠FMD=∠GAC;∴∠FDM+∠FMD=∠EDG+∠GAC=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=180°-(∠FDM+∠FMD)=180°-(90°-∠B)=90°+∠B;(2)∠AFD=90°-∠B,理由如下:如圖,射線ED交AG于點M,∵AG平分∠BAC,DF平分∠EDB,∴∠CAG=∠BAC,∠NDE=∠EDB,∴∠FDM=∠NDE=∠EDB,∵DE//AC,∴∠EDB=∠C,∠FMD=∠GAC;∴∠FDM=∠NDE=∠C,∴∠FDM+∠FMD=∠C+∠BAC=(∠BAC+∠C)=×(180°-∠B)=90°-∠B;∴∠AFD=∠FDM+∠FMD=90°-∠B.【點睛】本題考查了角平分線的定義、平行線的性質、三角形的內角和定理及三角形外角的性質,根據(jù)角平分線的定義、平行線的性質、三角形的內角和定理及三角形外角的性質確定各角之間的關系是解決問題的關鍵.18.解決問題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結論;拓展延伸:(1)解析:解決問題:6;拓展延伸:(1)S1=2S2(2)10.5【解析】試題分析:解決問題:連接AE,根據(jù)操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,從而得到結論;拓展延伸:(1)作△ABD的中線AE,則有BE=ED=DC,從而得到△ABE的面積=△AED的面積=△ADC的面積,由此即可得到結論;(2)連接AO.則可得到△BOD的面積=△BOC的面積,△AOC的面積=△AOD的面積,△EOC的面積=△BOC的面積的一半,△AOB的面積=2△AOE的面積.設△AOD的面積=a,△AOE的面積=b,則a+3=2b,a=b+1.5,求出a、b的值,即可得到結論.試題解析:解:解決問題連接AE.∵點D、E分別是邊AB、BC的中點,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE=2,∴S△ADE=2,∴S△ABE=S△AEC=4,∴四邊形ADEC的面積=2+4=6.拓展延伸:解:(1)作△ABD的中線AE,則有BE=ED=DC,∴△ABE的面積=△AED的面積=△ADC的面積=S2,∴S1=2S2.(2)連接AO.∵CO=DO,∴△BOD的面積=△BOC的面積=3,△AOC的面積=△AOD的面積.∵BO=2EO,∴△EOC的面積=△BOC的面積的一半=1.5,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度醫(yī)療器械售后回租租賃服務協(xié)議3篇
- 2024版商業(yè)物業(yè)續(xù)約協(xié)議細則版
- 二零二五年度個人汽車貸款合同續(xù)貸及還款條件優(yōu)化協(xié)議3篇
- 2024汽車無償短期借用合同樣本版B版
- 二零二五年度農業(yè)企業(yè)股權與農業(yè)資產整體轉讓協(xié)議3篇
- 二零二五年度公司注銷與知識產權授權合同3篇
- 課題申報書:新疆南疆高校少數(shù)民族學生思想政治教育機制創(chuàng)新研究
- 2024建筑施工合同管理培訓.x
- 2024濕地公園生態(tài)綠化設計與施工一體化合同3篇
- 2025版電動防盜門與智能家居系統(tǒng)購銷合同模板2篇
- 2024-2025學年七年級上學期語文期末考前押題卷(統(tǒng)編版2024+含答案)
- 土建定額培訓課件
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應用實踐指導材料之13:“6策劃-6.2創(chuàng)新目標及其實現(xiàn)的策劃”(雷澤佳編制-2025B0)
- 二年級上冊《語文園地八》日積月累
- 2024年保護環(huán)境的建議書范文(33篇)
- 2024年中國PVC鞋底料市場調查研究報告
- 退休人員公益活動合作合同
- 四年級數(shù)學(四則混合運算帶括號)計算題專項練習與答案
- 2022年期貨從業(yè)資格《期貨基礎知識》考試題庫(含典型題)
- 浙江省湖州市2023-2024學年高二上學期期末調研測試數(shù)學試題 含解析
- ICD-10疾病編碼完整版
評論
0/150
提交評論