版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
四川省成都樹(shù)德中學(xué)2024屆中考數(shù)學(xué)全真模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿(mǎn)分30分)1.半徑為的正六邊形的邊心距和面積分別是()A., B.,C., D.,2.一枚質(zhì)地均勻的骰子,其六個(gè)面上分別標(biāo)有數(shù)字1,2,3,4,5,6,投擲一次,朝上一面的數(shù)字是偶數(shù)的概率為().A. B. C. D.3.如圖,在四邊形ABCD中,如果∠ADC=∠BAC,那么下列條件中不能判定△ADC和△BAC相似的是()A.∠DAC=∠ABC B.AC是∠BCD的平分線 C.AC2=BC?CD D.4.如圖,DE是線段AB的中垂線,,,,則點(diǎn)A到BC的距離是A.4 B. C.5 D.65.如果一個(gè)多邊形的內(nèi)角和是外角和的3倍,則這個(gè)多邊形的邊數(shù)是()A.8 B.9 C.10 D.116.有三張正面分別標(biāo)有數(shù)字-2,3,4的不透明卡片,它們除數(shù)字不同外,其余全部相同,現(xiàn)將它們背面朝上洗勻后,從中任取一張(不放回),再?gòu)氖S嗟目ㄆ腥稳∫粡垼瑒t兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是()A. B. C. D.7.去年二月份,某房地產(chǎn)商將房?jī)r(jià)提高40%,在中央“房子是用來(lái)住的,不是用來(lái)炒的”指示下達(dá)后,立即降價(jià)30%.設(shè)降價(jià)后房?jī)r(jià)為x,則去年二月份之前房?jī)r(jià)為()A.(1+40%)×30%x B.(1+40%)(1﹣30%)xC. D.8.如圖,是反比例函數(shù)圖象,陰影部分表示它與橫縱坐標(biāo)軸正半軸圍成的區(qū)域,在該區(qū)域內(nèi)不包括邊界的整數(shù)點(diǎn)個(gè)數(shù)是k,則拋物線向上平移k個(gè)單位后形成的圖象是A. B.C. D.9.下列計(jì)算正確的是()A.=±3 B.﹣32=9 C.(﹣3)﹣2= D.﹣3+|﹣3|=﹣610.如圖1,將三角板的直角頂點(diǎn)放在直角尺的一邊上,D1=30°,D2=50°,則D3的度數(shù)為A.80° B.50° C.30° D.20°二、填空題(共7小題,每小題3分,滿(mǎn)分21分)11.如圖,某水庫(kù)大壩的橫斷面是梯形,壩頂寬米,壩高是20米,背水坡的坡角為30°,迎水坡的坡度為1∶2,那么壩底的長(zhǎng)度等于________米(結(jié)果保留根號(hào))12.分式方程+=1的解為_(kāi)_______.13.如圖,無(wú)人機(jī)在空中C處測(cè)得地面A、B兩點(diǎn)的俯角分別為60°、45°,如果無(wú)人機(jī)距地面高度CD為米,點(diǎn)A、D、B在同一水平直線上,則A、B兩點(diǎn)間的距離是_____米.(結(jié)果保留根號(hào))14.在平面直角坐標(biāo)系中,直線l:y=x﹣1與x軸交于點(diǎn)A1,如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形AnBnCnCn﹣1,使得點(diǎn)A1、A2、A3、…在直線l上,點(diǎn)C1、C2、C3、…在y軸正半軸上,則點(diǎn)Bn的坐標(biāo)是_____.15.如圖,ABCD是菱形,AC是對(duì)角線,點(diǎn)E是AB的中點(diǎn),過(guò)點(diǎn)E作對(duì)角線AC的垂線,垂足是點(diǎn)M,交AD邊于點(diǎn)F,連結(jié)DM.若∠BAD=120°,AE=2,則DM=__.16.如圖,在△ABC中,∠C=90°,AC=8,BC=6,點(diǎn)D是AB的中點(diǎn),點(diǎn)E在邊AC上,將△ADE沿DE翻折,使點(diǎn)A落在點(diǎn)A′處,當(dāng)A′E⊥AC時(shí),A′B=____.17.如圖,已知圓柱底面周長(zhǎng)為6cm,圓柱高為2cm,在圓柱的側(cè)面上,過(guò)點(diǎn)A和點(diǎn)C嵌有一圈金屬絲,則這圈金屬絲的周長(zhǎng)最小為_(kāi)____cm.三、解答題(共7小題,滿(mǎn)分69分)18.(10分)如圖①,已知拋物線y=ax2+bx+c的圖像經(jīng)過(guò)點(diǎn)A(0,3)、B(1,0),其對(duì)稱(chēng)軸為直線l:x=2,過(guò)點(diǎn)A作AC∥x軸交拋物線于點(diǎn)C,∠AOB的平分線交線段AC于點(diǎn)E,點(diǎn)P是拋物線上的一個(gè)動(dòng)點(diǎn),設(shè)其橫坐標(biāo)為m.(1)求拋物線的解析式;(2)若動(dòng)點(diǎn)P在直線OE下方的拋物線上,連結(jié)PE、PO,當(dāng)m為何值時(shí),四邊形AOPE面積最大,并求出其最大值;(3)如圖②,F(xiàn)是拋物線的對(duì)稱(chēng)軸l上的一點(diǎn),在拋物線上是否存在點(diǎn)P使△POF成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若存在,直接寫(xiě)出所有符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.19.(5分)解不等式組:,并把解集在數(shù)軸上表示出來(lái).20.(8分)如圖,已知:正方形ABCD,點(diǎn)E在CB的延長(zhǎng)線上,連接AE、DE,DE與邊AB交于點(diǎn)F,F(xiàn)G∥BE交AE于點(diǎn)G.(1)求證:GF=BF;(2)若EB=1,BC=4,求AG的長(zhǎng);(3)在BC邊上取點(diǎn)M,使得BM=BE,連接AM交DE于點(diǎn)O.求證:FO?ED=OD?EF.21.(10分)如圖,拋物線與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱(chēng)軸為=–1,P為拋物線上第二象限的一個(gè)動(dòng)點(diǎn).(1)求拋物線的解析式并寫(xiě)出其頂點(diǎn)坐標(biāo);(2)當(dāng)點(diǎn)P的縱坐標(biāo)為2時(shí),求點(diǎn)P的橫坐標(biāo);(3)當(dāng)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,求四邊形PABC面積最大時(shí)的值及此時(shí)點(diǎn)P的坐標(biāo).22.(10分)邊長(zhǎng)為6的等邊△ABC中,點(diǎn)D,E分別在AC,BC邊上,DE∥AB,EC=2如圖1,將△DEC沿射線EC方向平移,得到△D′E′C′,邊D′E′與AC的交點(diǎn)為M,邊C′D′與∠ACC′的角平分線交于點(diǎn)N.當(dāng)CC′多大時(shí),四邊形MCND′為菱形?并說(shuō)明理由.如圖2,將△DEC繞點(diǎn)C旋轉(zhuǎn)∠α(0°<α<360°),得到△D′E′C,連接AD′,BE′.邊D′E′的中點(diǎn)為P.①在旋轉(zhuǎn)過(guò)程中,AD′和BE′有怎樣的數(shù)量關(guān)系?并說(shuō)明理由;②連接AP,當(dāng)AP最大時(shí),求AD′的值.(結(jié)果保留根號(hào))23.(12分)已知,,,斜邊,將繞點(diǎn)順時(shí)針旋轉(zhuǎn),如圖1,連接.(1)填空:;(2)如圖1,連接,作,垂足為,求的長(zhǎng)度;(3)如圖2,點(diǎn),同時(shí)從點(diǎn)出發(fā),在邊上運(yùn)動(dòng),沿路徑勻速運(yùn)動(dòng),沿路徑勻速運(yùn)動(dòng),當(dāng)兩點(diǎn)相遇時(shí)運(yùn)動(dòng)停止,已知點(diǎn)的運(yùn)動(dòng)速度為1.5單位秒,點(diǎn)的運(yùn)動(dòng)速度為1單位秒,設(shè)運(yùn)動(dòng)時(shí)間為秒,的面積為,求當(dāng)為何值時(shí)取得最大值?最大值為多少?24.(14分)如圖,在平面直角坐標(biāo)系中,已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別是A(1,1),B(4,1),C(3,3).(1)將△ABC向下平移5個(gè)單位后得到△A1B1C1,請(qǐng)畫(huà)出△A1B1C1;(2)將△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A2B2C2,請(qǐng)畫(huà)出△A2B2C2;(3)判斷以O(shè),A1,B為頂點(diǎn)的三角形的形狀.(無(wú)須說(shuō)明理由)
參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿(mǎn)分30分)1、A【解析】
首先根據(jù)題意畫(huà)出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長(zhǎng)為R,然后利用解直角三角形求得邊心距,又由S正六邊形=求得正六邊形的面積.【詳解】解:如圖,O為正六邊形外接圓的圓心,連接OB,OC,過(guò)點(diǎn)O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,半徑為,∴∠BOC=,∵OB=OC=R,∴△OBC是等邊三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即邊心距為;∵,∴S正六邊形=,故選:A.【點(diǎn)睛】本題考查了正多邊形和圓的知識(shí);求得正六邊形的中心角為60°,得到等邊三角形是正確解答本題的關(guān)鍵.2、B【解析】
朝上的數(shù)字為偶數(shù)的有3種可能,再根據(jù)概率公式即可計(jì)算.【詳解】依題意得P(朝上一面的數(shù)字是偶數(shù))=故選B.【點(diǎn)睛】此題主要考查概率的計(jì)算,解題的關(guān)鍵是熟知概率公式進(jìn)行求解.3、C【解析】
結(jié)合圖形,逐項(xiàng)進(jìn)行分析即可.【詳解】在△ADC和△BAC中,∠ADC=∠BAC,如果△ADC∽△BAC,需滿(mǎn)足的條件有:①∠DAC=∠ABC或AC是∠BCD的平分線;②,故選C.【點(diǎn)睛】本題考查了相似三角形的條件,熟練掌握相似三角形的判定方法是解題的關(guān)鍵.4、A【解析】
作于利用直角三角形30度角的性質(zhì)即可解決問(wèn)題.【詳解】解:作于H.
垂直平分線段AB,
,
,
,
,
,
,
,,
,
故選A.【點(diǎn)睛】本題考查線段的垂直平分線的性質(zhì),等腰三角形的性質(zhì),解直角三角形等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線,構(gòu)造直角三角形解決問(wèn)題,屬于中考??碱}型.5、A【解析】分析:根據(jù)多邊形的內(nèi)角和公式及外角的特征計(jì)算.詳解:多邊形的外角和是360°,根據(jù)題意得:
110°?(n-2)=3×360°
解得n=1.
故選A.點(diǎn)睛:本題主要考查了多邊形內(nèi)角和公式及外角的特征.求多邊形的邊數(shù),可以轉(zhuǎn)化為方程的問(wèn)題來(lái)解決.6、C【解析】畫(huà)樹(shù)狀圖得:
∵共有6種等可能的結(jié)果,兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的有2種情況,
∴兩次抽取的卡片上的數(shù)字之積為正偶數(shù)的概率是:.故選C.【點(diǎn)睛】運(yùn)用列表法或樹(shù)狀圖法求概率.注意畫(huà)樹(shù)狀圖法與列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,列表法適合于兩步完成的事件;樹(shù)狀圖法適合兩步或兩步以上完成的事件.7、D【解析】
根據(jù)題意可以用相應(yīng)的代數(shù)式表示出去年二月份之前房?jī)r(jià),本題得以解決.【詳解】由題意可得,去年二月份之前房?jī)r(jià)為:x÷(1﹣30%)÷(1+40%)=,故選:D.【點(diǎn)睛】本題考查了列代數(shù)式,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的代數(shù)式.8、A【解析】
依據(jù)反比例函數(shù)的圖象與性質(zhì),即可得到整數(shù)點(diǎn)個(gè)數(shù)是5個(gè),進(jìn)而得到拋物線向上平移5個(gè)單位后形成的圖象.【詳解】解:如圖,反比例函數(shù)圖象與坐標(biāo)軸圍成的區(qū)域內(nèi)不包括邊界的整數(shù)點(diǎn)個(gè)數(shù)是5個(gè),即,
拋物線向上平移5個(gè)單位后可得:,即,
形成的圖象是A選項(xiàng).
故選A.【點(diǎn)睛】本題考查反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征、反比例函數(shù)的圖象、二次函數(shù)的性質(zhì)與圖象,解答本題的關(guān)鍵是明確題意,求出相應(yīng)的k的值,利用二次函數(shù)圖象的平移規(guī)律進(jìn)行解答.9、C【解析】
分別根據(jù)二次根式的定義,乘方的意義,負(fù)指數(shù)冪的意義以及絕對(duì)值的定義解答即可.【詳解】=3,故選項(xiàng)A不合題意;﹣32=﹣9,故選項(xiàng)B不合題意;(﹣3)﹣2=,故選項(xiàng)C符合題意;﹣3+|﹣3|=﹣3+3=0,故選項(xiàng)D不合題意.故選C.【點(diǎn)睛】本題主要考查了二次根式的定義,乘方的定義、負(fù)指數(shù)冪的意義以及絕對(duì)值的定義,熟記定義是解答本題的關(guān)鍵.10、D【解析】試題分析:根據(jù)平行線的性質(zhì),得∠4=∠2=50°,再根據(jù)三角形的外角的性質(zhì)∠3=∠4-∠1=50°-30°=20°.故答案選D.考點(diǎn):平行線的性質(zhì);三角形的外角的性質(zhì).二、填空題(共7小題,每小題3分,滿(mǎn)分21分)11、【解析】
過(guò)梯形上底的兩個(gè)頂點(diǎn)向下底引垂線、,得到兩個(gè)直角三角形和一個(gè)矩形,分別解、求得線段、的長(zhǎng),然后與相加即可求得的長(zhǎng).【詳解】如圖,作,,垂足分別為點(diǎn)E,F(xiàn),則四邊形是矩形.由題意得,米,米,,斜坡的坡度為1∶2,在中,∵,∴米.在Rt△DCF中,∵斜坡的坡度為1∶2,∴,∴米,∴(米).∴壩底的長(zhǎng)度等于米.故答案為.【點(diǎn)睛】此題考查了解直角三角形的應(yīng)用﹣坡度坡角問(wèn)題,難度適中,解答本題的關(guān)鍵是構(gòu)造直角三角形和矩形,注意理解坡度與坡角的定義.12、【解析】
根據(jù)解分式方程的步驟,即可解答.【詳解】方程兩邊都乘以,得:,解得:,檢驗(yàn):當(dāng)時(shí),,所以分式方程的解為,故答案為.【點(diǎn)睛】考查了解分式方程,解分式方程的基本思想是“轉(zhuǎn)化思想”,把分式方程轉(zhuǎn)化為整式方程求解解分式方程一定注意要驗(yàn)根.13、100(1+)【解析】分析:如圖,利用平行線的性質(zhì)得∠A=60°,∠B=45°,在Rt△ACD中利用正切定義可計(jì)算出AD=100,在Rt△BCD中利用等腰直角三角形的性質(zhì)得BD=CD=100,然后計(jì)算AD+BD即可.詳解:如圖,∵無(wú)人機(jī)在空中C處測(cè)得地面A、B兩點(diǎn)的俯角分別為60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tanA=,∴AD==100,在Rt△BCD中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B兩點(diǎn)間的距離為100(1+)米.故答案為100(1+).點(diǎn)睛:本題考查了解直角三角形的應(yīng)用﹣仰角俯角問(wèn)題:解決此類(lèi)問(wèn)題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒(méi)有直角三角形時(shí),要通過(guò)作高或垂線構(gòu)造直角三角形.14、(2n﹣1,2n﹣1).【解析】
解:∵y=x-1與x軸交于點(diǎn)A1,
∴A1點(diǎn)坐標(biāo)(1,0),
∵四邊形A1B1C1O是正方形,
∴B1坐標(biāo)(1,1),
∵C1A2∥x軸,
∴A2坐標(biāo)(2,1),
∵四邊形A2B2C2C1是正方形,
∴B2坐標(biāo)(2,3),
∵C2A3∥x軸,
∴A3坐標(biāo)(4,3),
∵四邊形A3B3C3C2是正方形,
∴B3(4,7),
∵B1(20,21-1),B2(21,22-1),B3(22,23-1),…,
∴Bn坐標(biāo)(2n-1,2n-1).
故答案為(2n-1,2n-1).15、.【解析】
作輔助線,構(gòu)建直角△DMN,先根據(jù)菱形的性質(zhì)得:∠DAC=60°,AE=AF=2,也知菱形的邊長(zhǎng)為4,利用勾股定理求MN和DN的長(zhǎng),從而計(jì)算DM的長(zhǎng).【詳解】解:過(guò)M作MN⊥AD于N,∵四邊形ABCD是菱形,∴∵EF⊥AC,∴AE=AF=2,∠AFM=30°,∴AM=1,Rt△AMN中,∠AMN=30°,∴∵AD=AB=2AE=4,∴由勾股定理得:故答案為【點(diǎn)睛】本題主要考查了菱形的性質(zhì),等腰三角形的性質(zhì),勾股定理及直角三角形30度角的性質(zhì),熟練掌握直角三角形中30°所對(duì)的直角邊是斜邊的一半.16、或7【解析】
分兩種情況:①如圖1,作輔助線,構(gòu)建矩形,先由勾股定理求斜邊AB=10,由中點(diǎn)的定義求出AD和BD的長(zhǎng),證明四邊形HFGB是矩形,根據(jù)同角的三角函數(shù)列式可以求DG和DF的長(zhǎng),并由翻折的性質(zhì)得:∠DA'E=∠A,A'D=AD=5,由矩形性質(zhì)和勾股定理可以得出結(jié)論:A'B=;②如圖2,作輔助線,構(gòu)建矩形A'MNF,同理可以求出A'B的長(zhǎng).【詳解】解:分兩種情況:如圖1,過(guò)D作DG⊥BC與G,交A'E與F,過(guò)B作BH⊥A'E與H,D為AB的中點(diǎn),BD=AB=AD,∠C=,AC=8,BC=6,AB=10,BD=AD=5,sin∠ABC=,DG=4,由翻折得:∠DA'E=∠A,A'D=AD=5,sin∠DA'E=sin∠A=.DF=3,FG=4-3=1,A'E⊥AC,BC⊥AC,A'E//BC,∠HFG+∠DGB=,∠DGB=,∠HFG=,∠EHB=,四邊形HFGB是矩形,BH=FG=1,同理得:A'E=AE=8-1=7,A'H=A'E-EH=7-6=1,在Rt△AHB中,由勾股定理得:A'B=.如圖2,過(guò)D作MN//AC,交BC與于N,過(guò)A'作A'F//AC,交BC的延長(zhǎng)線于F,延長(zhǎng)A'E交直線DN于M,A'E⊥AC,A'M⊥MN,A'E⊥A'F,∠M=∠MA'F=,∠ACB=,∠F=∠ACB=,四邊形MA'FN県矩形,MN=A'F,FN=A'M,由翻折得:A'D=AD=5,Rt△A'MD中,DM=3,A'M=4,FN=A'M=4,Rt△BDN中,BD=5,DN=4,BN=3,A'F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A'B=;綜上所述,A'B的長(zhǎng)為或.故答案為:或.【點(diǎn)睛】本題主要考查三角形翻轉(zhuǎn)后的性質(zhì),注意不同的情況需分情況討論.17、2【解析】
要求絲線的長(zhǎng),需將圓柱的側(cè)面展開(kāi),進(jìn)而根據(jù)“兩點(diǎn)之間線段最短”得出結(jié)果,在求線段長(zhǎng)時(shí),根據(jù)勾股定理計(jì)算即可.【詳解】解:如圖,把圓柱的側(cè)面展開(kāi),得到矩形,則這圈金屬絲的周長(zhǎng)最小為2AC的長(zhǎng)度.∵圓柱底面的周長(zhǎng)為6cm,圓柱高為2cm,∴AB=2cm,BC=BC′=3cm,∴AC2=22+32=13,∴AC=cm,∴這圈金屬絲的周長(zhǎng)最小為2AC=2cm.故答案為2.【點(diǎn)睛】本題考查了平面展開(kāi)?最短路徑問(wèn)題,圓柱的側(cè)面展開(kāi)圖是一個(gè)矩形,此矩形的長(zhǎng)等于圓柱底面周長(zhǎng),高等于圓柱的高,本題就是把圓柱的側(cè)面展開(kāi)成矩形,“化曲面為平面”,用勾股定理解決.三、解答題(共7小題,滿(mǎn)分69分)18、(1)y=x2-4x+3.(2)當(dāng)m=時(shí),四邊形AOPE面積最大,最大值為.(3)P點(diǎn)的坐標(biāo)為:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用對(duì)稱(chēng)性可得點(diǎn)D的坐標(biāo),利用交點(diǎn)式可得拋物線的解析式;(2)設(shè)P(m,m2-4m+3),根據(jù)OE的解析式表示點(diǎn)G的坐標(biāo),表示PG的長(zhǎng),根據(jù)面積和可得四邊形AOPE的面積,利用配方法可得其最大值;(3)存在四種情況:如圖3,作輔助線,構(gòu)建全等三角形,證明△OMP≌△PNF,根據(jù)OM=PN列方程可得點(diǎn)P的坐標(biāo);同理可得其他圖形中點(diǎn)P的坐標(biāo).詳解:(1)如圖1,設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為D,由對(duì)稱(chēng)性得:D(3,0),設(shè)拋物線的解析式為:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴拋物線的解析式;y=x2-4x+3;(2)如圖2,設(shè)P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式為:y=x,過(guò)P作PG∥y軸,交OE于點(diǎn)G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四邊形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴當(dāng)m=時(shí),S有最大值是;(3)如圖3,過(guò)P作MN⊥y軸,交y軸于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),則-m2+4m-3=2-m,解得:m=或,∴P的坐標(biāo)為(,)或(,);如圖4,過(guò)P作MN⊥x軸于N,過(guò)F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,則-m2+4m-3=m-2,解得:x=或;P的坐標(biāo)為(,)或(,);綜上所述,點(diǎn)P的坐標(biāo)是:(,)或(,)或(,)或(,).點(diǎn)睛:本題屬于二次函數(shù)綜合題,主要考查了二次函數(shù)的綜合應(yīng)用,相似三角形的判定與性質(zhì)以及解一元二次方程的方法,解第(2)問(wèn)時(shí)需要運(yùn)用配方法,解第(3)問(wèn)時(shí)需要運(yùn)用分類(lèi)討論思想和方程的思想解決問(wèn)題.19、則不等式組的解集是﹣1<x≤3,不等式組的解集在數(shù)軸上表示見(jiàn)解析.【解析】
先求出不等式組中每一個(gè)不等式的解集,再求出它們的公共部分就是不等式組的解集.【詳解】解不等式①得:x>﹣1,解不等式②得:x≤3,則不等式組的解集是:﹣1<x≤3,不等式組的解集在數(shù)軸上表示為:.【點(diǎn)睛】本題考查了解一元一次不等式組,熟知確定解集的方法“同大取大,同小取小,大小小大中間找,大大小小無(wú)處找”是解題的關(guān)鍵.也考查了在數(shù)軸上表示不等式組的解集.20、(1)證明見(jiàn)解析;(2)AG=;(3)證明見(jiàn)解析.【解析】
(1)根據(jù)正方形的性質(zhì)得到AD∥BC,AB∥CD,AD=CD,根據(jù)相似三角形的性質(zhì)列出比例式,等量代換即可;(2)根據(jù)勾股定理求出AE,根據(jù)相似三角形的性質(zhì)計(jì)算即可;(3)延長(zhǎng)GF交AM于H,根據(jù)平行線分線段成比例定理得到,由于BM=BE,得到GF=FH,由GF∥AD,得到,等量代換得到,即,于是得到結(jié)論.【詳解】解:(1)∵四邊形ABCD是正方形,∴AD∥BC,AB∥CD,AD=CD,∵GF∥BE,∴GF∥BC,∴GF∥AD,∴,∵AB∥CD,,∵AD=CD,∴GF=BF;(2)∵EB=1,BC=4,∴=4,AE=,∴=4,∴AG=;(3)延長(zhǎng)GF交AM于H,∵GF∥BC,∴FH∥BC,∴,∴,∵BM=BE,∴GF=FH,∵GF∥AD,∴,,∴,∴,∴FO?ED=OD?EF.【點(diǎn)睛】本題主要考查平行線分線段成比例及正方形的性質(zhì),掌握平行線分線段中的線段對(duì)應(yīng)成比例是解題的關(guān)鍵,注意利用比例相等也可以證明線段相等.21、(1)二次函數(shù)的解析式為,頂點(diǎn)坐標(biāo)為(–1,4);(2)點(diǎn)P橫坐標(biāo)為––1;(3)當(dāng)時(shí),四邊形PABC的面積有最大值,點(diǎn)P().【解析】試題分析:(1)已知拋物線與軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱(chēng)軸為=﹣1,由此列出方程組,解方程組求得a、b、c的值,即可得拋物線的解析式,把解析式化為頂點(diǎn)式,直接寫(xiě)出頂點(diǎn)坐標(biāo)即可;(2)把y=2代入解析式,解方程求得x的值,即可得點(diǎn)P的橫坐標(biāo),從而求得點(diǎn)P的坐標(biāo);(3)設(shè)點(diǎn)P(,),則,根據(jù)得出四邊形PABC與x之間的函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求得x的值,即可求得點(diǎn)P的坐標(biāo).試題解析:(1)∵拋物線與軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對(duì)稱(chēng)軸為=﹣1,∴,解得:,∴二次函數(shù)的解析式為=,∴頂點(diǎn)坐標(biāo)為(﹣1,4)(2)設(shè)點(diǎn)P(,2),即=2,解得=﹣1(舍去)或=﹣﹣1,∴點(diǎn)P(﹣﹣1,2).(3)設(shè)點(diǎn)P(,),則,,∴=∴當(dāng)時(shí),四邊形PABC的面積有最大值.所以點(diǎn)P().點(diǎn)睛:本題是二次函數(shù)綜合題,主要考查學(xué)生對(duì)二次函數(shù)解決動(dòng)點(diǎn)問(wèn)題綜合運(yùn)用能力,動(dòng)點(diǎn)問(wèn)題為中考常考題型,注意培養(yǎng)數(shù)形結(jié)合思想,培養(yǎng)綜合分析歸納能力,解決這類(lèi)問(wèn)題要會(huì)建立二次函數(shù)模型,利用二次函數(shù)的性質(zhì)解決問(wèn)題.22、(1)當(dāng)CC'=時(shí),四邊形MCND'是菱形,理由見(jiàn)解析;(2)①AD'=BE',理由見(jiàn)解析;②.【解析】
(1)先判斷出四邊形MCND'為平行四邊形,再由菱形的性質(zhì)得出CN=CM,即可求出CC';(2)①分兩種情況,利用旋轉(zhuǎn)的性質(zhì),即可判斷出△ACD≌△BCE'即可得出結(jié)論;②先判斷出點(diǎn)A,C,P三點(diǎn)共線,先求出CP,AP,最后用勾股定理即可得出結(jié)論.【詳解】(1)當(dāng)CC'=時(shí),四邊形MCND'是菱形.理由:由平移的性質(zhì)得,CD∥C'D',DE∥D'E',∵△ABC是等邊三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分線,∴∠D'E'C'=∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四邊形MCND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等邊三角形,∴MC=CE',NC=CC',∵E'C'=2,∵四邊形MCND'是菱形,∴CN=CM,∴CC'=E'C'=;(2)①AD'=BE',理由:當(dāng)α≠180°時(shí),由旋轉(zhuǎn)的性質(zhì)得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',當(dāng)α=180°時(shí),AD'=AC+CD',BE'=BC+CE',即:AD'=BE',綜上可知:AD'=BE'.②如圖連接CP,在△ACP中,由三角形三邊關(guān)系得,AP<AC+CP,∴當(dāng)點(diǎn)A,C,P三點(diǎn)共線時(shí),AP最大,如圖1,在△D'CE'中,由P為D'E的中點(diǎn),得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'=.【點(diǎn)睛】此題是四邊形綜合題,主要考查了平行四邊形的判定和性質(zhì),菱形的性質(zhì),平移和旋轉(zhuǎn)的性質(zhì),等邊三角形的判定和性質(zhì),勾股定理,解(1)的關(guān)鍵是四邊形MCND'是平行四邊形,解(2)的關(guān)鍵是判斷出點(diǎn)A,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《電路分析基礎(chǔ)試題》課件
- 《微觀經(jīng)濟(jì)學(xué)》考試試卷試題及參考答案
- 《專(zhuān)業(yè)英語(yǔ)(計(jì)算機(jī)英語(yǔ))》復(fù)習(xí)題
- 八下期末考拔高測(cè)試卷(5)(原卷版)
- 《誠(chéng)邀創(chuàng)業(yè)伙伴》課件
- 2012年高考語(yǔ)文試卷(安徽)(解析卷)
- 父母課堂與教育理念分享計(jì)劃
- 購(gòu)物中心導(dǎo)購(gòu)員服務(wù)總結(jié)
- 水產(chǎn)養(yǎng)殖行業(yè)銷(xiāo)售工作總結(jié)
- 娛樂(lè)場(chǎng)館衛(wèi)生要素
- 潛水泵安裝方案73853
- 安全操作規(guī)程(供參考)(公示牌)
- 2022年公司出納個(gè)人年度工作總結(jié)
- 蓄電池檢查和維護(hù)
- 口袋妖怪白金二周目圖文攻略(精編版)
- 安全風(fēng)險(xiǎn)研判與承諾公告制度管理辦法(最新)
- 體育與健康課一年級(jí)(水平一)課時(shí)教案全冊(cè)
- SAP-ABAP-實(shí)用培訓(xùn)教程
- 配電房施工組織設(shè)計(jì)方案(土建部分)
- 國(guó)家開(kāi)放大學(xué)電大專(zhuān)科《英語(yǔ)教學(xué)法》2023-2024期末試題及答案(試卷代號(hào):2145)
- 管樁水平承載力計(jì)算
評(píng)論
0/150
提交評(píng)論