版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
DigitalImageProcessingWaveletandMultiresolutionProcessing
MultiresolutionAnalysisManysignalsorimagescontainfeaturesatvariouslevelsofdetail(i.e.,scales). Smallsizeobjectsshouldbeexaminedatahigh
resolution.Largesizeobjectsshouldbeexaminedatalow
resolution.MultiresolutionAnalysis(cont’d)Localimagestatisticsarequitedifferentfromglobalimagestatistics.Modelingentireimageisdifficultorimpossible.Needtoanalyzeimagesatmultiplelevelsofdetail.Transform:AmathematicaloperationthattakesafunctionorsequenceandmapsitintoanotheroneTransformsaregoodthingsbecause…Thetransformofafunctionmaygiveadditional/hiddeninformationabouttheoriginalfunction,whichmaynotbeavailable/obviousotherwiseThetransformofanequationmaybeeasiertosolvethantheoriginalequationThetransformofafunction/sequencemayrequirelessstorage,henceprovidedatacompression/reductionAnoperationmaybeeasiertoapplyonthetransformedfunction,ratherthantheoriginalfunction(recallconvolution)Introduction(RobiPolikar,RowanUniversity)
WhatisaTransformandWhydoWeNeedOne?Mostusefultransformsare:Linear:wecanpulloutconstants,andapplysuperpositionOne-to-one:differentfunctionshavedifferenttransformsInvertible:foreachtransformT,thereisaninversetransformT-1usingwhichtheoriginalfunctionfcanberecovered(kindof–sortoftheundobutton…)Continuoustransform:mapfunctionstofunctionsDiscretetransform:mapsequencestosequencesTfFT-1fIntroduction
PropertiesofTransformsComplexfunctionrepresentationthroughsimplebuildingblocksCompressedrepresentationthroughusingonlyafewblocks(calledbasisfunctions/kernels)Sinusoidsasbuildingblocks:FouriertransformFrequencydomainrepresentationofthefunctionIntroduction
WhatDoesaTransformLookLike?FourierseriesContinuousFouriertransformLaplacetransformDiscreteFouriertransformZ-transformIntroduction
WhatTransformsareAvailable?JeanB.JosephFourier(1768-1830)“Anarbitraryfunction,continuousorwithdiscontinuities,definedinafiniteintervalbyanarbitrarilycapriciousgraphcanalwaysbeexpressedasasumofsinusoids” J.B.J.FourierDecember,21,1807Introduction
FourierWho…?RecallthatFTusescomplexexponentials(sinusoids)asbuildingblocks.Foreachfrequencyofcomplexexponential,thesinusoidatthatfrequencyiscomparedtothesignal.Ifthesignalconsistsofthatfrequency,thecorrelationishighlargeFTcoefficients.Ifthesignaldoesnothaveanyspectralcomponentatafrequency,thecorrelationatthatfrequencyislow/zero,small/zeroFTcoefficient.Introduction
HowDoesFTWorkAnyway?Introduction
FTatWorkFFFIntroduction
FTatWorkFIntroduction
FTatWorkComplexexponentials(sinusoids)asbasisfunctions:FAnultrasonicA-scanusing1.5MHztransducer,sampledat10MHzIntroduction
FTatWorkFTidentifiesallspectralcomponentspresentinthesignal,howeveritdoesnotprovideanyinformationregardingthetemporal(time)localizationofthesecomponents.Why?StationarysignalsconsistofspectralcomponentsthatdonotchangeintimeallspectralcomponentsexistatalltimesnoneedtoknowanytimeinformationFTworkswellforstationarysignalsHowever,non-stationarysignalsconsistsoftimevaryingspectralcomponentsHowdowefindoutwhichspectralcomponentappearswhen?FTonlyprovideswhatspectralcomponentsexist
,notwhereintimetheyarelocated.NeedsomeotherwaystodeterminetimelocalizationofspectralcomponentsIntroduction
StationaryandNon-stationarySignalsStationarysignals’spectralcharacteristicsdonotchangewithtimeNon-stationarysignalshavetimevaryingspectraConcatenationIntroduction
StationaryandNon-stationarySignals5Hz25Hz50HzPerfectknowledgeofwhatfrequenciesexist,butnoinformationaboutwherethesefrequenciesarelocatedintimeIntroduction
Non-stationarySignalsComplexexponentialsstretchouttoinfinityintimeTheyanalyzethesignalglobally,notlocallyHence,FTcanonlytellwhatfrequenciesexistintheentiresignal,butcannottell,atwhattimeinstancesthesefrequenciesoccurInordertoobtaintimelocalization
ofthespectralcomponents,thesignalneedtobeanalyzedlocally,BUTHOW?Introduction
FTShortcomingsChooseawindowfunctionoffinitelengthPutthewindowontopofthesignalatt=0TruncatethesignalusingthiswindowComputetheFTofthetruncatedsignal,save.SlidethewindowtotherightbyasmallamountGotostep3,untilwindowreachestheendofthesignalForeachtimelocationwherethewindowiscentered,weobtainadifferentFTHence,eachFTprovidesthespectralinformationofaseparatetime-sliceofthesignal,providingsimultaneoustimeandfrequencyinformationIntroduction
ShortTimeFourierTransform(STFT)Introduction
ShortTimeFourierTransform(STFT)STFTofsignalx(t):Computedforeachwindowcenteredatt=t’TimeparameterFrequencyparameterSignaltobeanalyzedWindowingfunctionWindowingfunctioncenteredatt=t’FTKernel(basisfunction)Introduction
ShortTimeFourierTransform(STFT)0100200300-1.5-1-0.500.510100200300-1.5-1-0.500.510100200300-1.5-1-0.500.510100200300-1.5-1-0.500.51WindowedsinusoidallowsFTtobecomputedonlythroughthesupportofthewindowingfunctionIntroduction
STFTatWorkIntroduction
STFT300Hz200Hz100Hz50HzSTFTprovidesthetimeinformationbycomputingadifferentFTsforconsecutivetimeintervals,andthenputtingthemtogetherTime-FrequencyRepresentation(TFR)Maps1-Dtimedomainsignalsto2-Dtime-frequencysignalsConsecutivetimeintervalsofthesignalareobtainedbytruncatingthesignalusingaslidingwindowingfunctionHowtochoosethewindowingfunction?Whatshape?Rectangular,Gaussian,Elliptic…?Howwide?Introduction
STFTTwoextremecases:W(t)infinitelylong:
STFTturnsintoFT,providingexcellentfrequencyinformation(goodfrequencyresolution),butnotimeinformationW(t)infinitelyshort:
STFTthengivesthetimesignalback,withaphasefactor.Excellenttimeinformation(goodtimeresolution),butnofrequencyinformationIntroduction
SelectionofSTFTWindowWideanalysiswindowpoortimeresolution,goodfrequencyresolutionNarrowanalysiswindowgoodtimeresolution,poorfrequencyresolutionOncethewindowischosen,theresolutionissetforbothtimeandfrequency.Timeresolution:HowwelltwospikesintimecanbeseparatedfromeachotherinthetransformdomainFrequencyresolution:HowwelltwospectralcomponentscanbeseparatedfromeachotherinthetransformdomainBothtimeandfrequencyresolutionscannotbearbitrarilyhigh!!!
Wecannotpreciselyknowatwhattimeinstanceafrequencycomponentislocated.WecanonlyknowwhatintervaloffrequenciesarepresentinwhichtimeintervalsIntroduction
HeisenbergUncertaintyPrincipleIntroduction
STFTGaussianwindowfunction:a=0.01a=0.0001a=0.00001OvercomesthepresetresolutionproblemoftheSTFTbyusingavariablelengthwindowAnalysiswindowsofdifferentlengthsareusedfordifferentfrequencies:AnalysisofhighfrequenciesUsenarrowerwindowsforbettertimeresolutionAnalysisoflowfrequenciesUsewiderwindowsforbetterfrequencyresolutionThisworkswell,ifthesignaltobeanalyzedmainlyconsistsofslowlyvaryingcharacteristicswithoccasionalshorthighfrequencybursts.Heisenbergprinciplestillholds!!!Thefunctionusedtowindowthesignaliscalledthewavelet
Introduction
WaveletTransformContinuouswavelettransformofthesignalx(t)usingtheanalysiswavelet(.)Translationparameter,measureoftimeScaleparameter,measureoffrequencyThemotherwavelet.Allkernelsareobtainedbytranslating(shifting)and/orscalingthemotherwaveletAnormalizationconstantSignaltobeanalyzedScale=1/frequencyIntroduction
WaveletTransformHighfrequency(smallscale)Lowfrequency(largescale)Introduction
WTatWorkIntroduction
WTatWorkIntroduction
WTatWorkIntroduction
WTatWorkIntroduction
TimeandFrequencyResolutionBackgroundImagePyramidsComputeareduced-resolutionapproximationoftheinputimageFiltering(Averaging,Gaussian)Down-samplingUp-sampletheoutputofthepreviousbyafactor2Computethedifferencebetweenthepredictionofstep2andtheinputto
Step1.ImagePyramidsImagePyramidsInMulti-resolutionAnalysis(MRA),aScalingFunctionisusedtocreateaseriesofapproximationsofafunctionorimage,eachdifferingbyafactor2fromitsnearestneighboringapproximations.Additionalfunctions,calledWavelet,areusedtoencodethedifferenceininformationbetweenadjacentapproximationMulti-ResolutionExpansionMulti-ResolutionExpansion
SeriesExpansionReal-valuedexpansioncoefficientsReal-valuedexpansionfunctionsIftheexpansionisUNIQUE-thatis,thereisonlyonesetofforanygiven-thearecalledbasisfunctions,andtheexpansionset,,iscalledaBASISfortheclassoffunctionsthatcanbesoexpressed.TheexpressiblefunctionsformafunctionspacethatisreferredtoastheclosespanoftheexpansionsetMulti-ResolutionExpansion
SeriesExpansionDualFunctionsMulti-ResolutionExpansion
SeriesExpansionCASE1:ExpansionfunctionsformanorthonormalbasisCASE2:Expansionfunctionsarenotorthonormal,butareanorthogonalbasis(biorthogonalbasis)CASE3:ExpansionsetisnotabasisMulti-ResolutionExpansion
ScalingFunctionsMulti-ResolutionExpansion
ScalingFunctionsThescalingfunctionsisORTHOGONALtoitsintegertranslations.Thesubspacespannedbythescalingfunctionatlowscalesarenestedwithinthosespannedathigherscales.TheonlyfunctionthatiscommontoallVj
is
f(x)=0AnyfunctioncanberepresentedwitharbitraryprecisionMulti-ResolutionExpansion
MRARequirementsMulti-ResolutionExpansion
MRARequirementsScalingVectorMulti-ResolutionExpansion
WaveletFunctionsUnionofSpacesMulti-ResolutionExpansion
Wavele
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度新能源汽車補(bǔ)貼申請(qǐng)及貸款服務(wù)合同3篇
- 二零二五年度程力危險(xiǎn)品廂式車廠家智能化調(diào)度中心建設(shè)合同4篇
- 二零二五年度綠色建筑項(xiàng)目承包勞務(wù)合同2篇
- 2025年度個(gè)人額度借款合同范本(消費(fèi)金融版)2篇
- 2025年度個(gè)人個(gè)人間影視版權(quán)借款合同2篇
- 二零二五年度餐飲業(yè)安全生產(chǎn)責(zé)任協(xié)議及隱患排查合同3篇
- 2025年個(gè)人信用卡分期付款合同示范文本4篇
- 2025產(chǎn)權(quán)交易委托合同適用于轉(zhuǎn)讓方采取拍賣、招投標(biāo)方式
- 2025代理合同(參考樣稿)
- 二零二五年度數(shù)據(jù)中心強(qiáng)電設(shè)備遠(yuǎn)程監(jiān)控服務(wù)合同3篇
- 2024年山東省濟(jì)南市中考英語(yǔ)試題卷(含答案解析)
- 2024年社區(qū)警務(wù)規(guī)范考試題庫(kù)
- 2024年食用牛脂項(xiàng)目可行性研究報(bào)告
- 靜脈治療護(hù)理技術(shù)操作標(biāo)準(zhǔn)(2023版)解讀 2
- 2024年全國(guó)各地中考試題分類匯編(一):現(xiàn)代文閱讀含答案
- 2024-2030年中國(guó)戶外音箱行業(yè)市場(chǎng)發(fā)展趨勢(shì)與前景展望戰(zhàn)略分析報(bào)告
- GB/T 30306-2024家用和類似用途飲用水處理濾芯
- 家務(wù)分工與責(zé)任保證書
- 消防安全隱患等級(jí)
- 溫室氣體(二氧化碳和甲烷)走航監(jiān)測(cè)技術(shù)規(guī)范
- 華為員工股權(quán)激勵(lì)方案
評(píng)論
0/150
提交評(píng)論