




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第2頁,共4頁2025屆上海外國語大附屬外國語學校數(shù)學九上開學檢測模擬試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)如圖,矩形ABCD中,AC與BD交于點O,若,,則對角線AC的長為()A.5 B.7.5 C.10 D.152、(4分)劉師傅要檢驗一個零件是否為平行四邊形,用下列方法不能檢驗的是()A.AB∥CD,AB=CD B.AB∥CD,AD=BCC.AB=CD,AD=BC D.AB∥CD,AD∥BC3、(4分)已知(﹣5,y1),(﹣3,y2)是一次函數(shù)y=x+2圖象上的兩點,則y1與y2的關系是()A.y1<y2 B.y1=y2 C.y1>y2 D.無法比較4、(4分)下列各組數(shù)中,不是勾股數(shù)的為()A.3,4,5 B.6,8,10 C.5,12,13 D.5,7,105、(4分)某校八年級有452名學生,為了了解這452名學生的課外閱讀情況,從中抽取50名學生進行統(tǒng)計.在這個問題中,樣本是()A.452名學生 B.抽取的50名學生C.452名學生的課外閱讀情況 D.抽取的50名學生的課外閱讀情況6、(4分)已知點在直線上,則關于的不等式的解集是()A. B. C. D.7、(4分)已知實數(shù)a,b,若a>b,則下列結論錯誤的是A.a(chǎn)-7>b-7 B.6+a>b+6 C. D.-3a>-3b8、(4分)點A,B,C,D都在如圖所示的由正方形組成的網(wǎng)格圖中,且線段CD與線段AB成位似圖形,則位似中心為()A.點E B.點FC.點H D.點G二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)如圖,把△ABC經(jīng)過一定的變換得到△A′B′C′,如果△ABC上點P的坐標為(a,b),那么點P變換后的對應點P′的坐標為_____.10、(4分)化成最簡二次根式后與最簡二次根式的被開方數(shù)相同,則a的值為______.11、(4分)在比例尺為1:5000的地圖上,量得甲,乙兩地的距離為30cm,則甲,乙兩地的實際距離是__________千米.12、(4分)分式的值為0,那么的值為_____.13、(4分)已知函數(shù)y=3x的圖象經(jīng)過點A(-1,y1),點B(-2,y2),則y1____y2(填“>”或“<”或“=”).三、解答題(本大題共5個小題,共48分)14、(12分)計算:(1).(2)15、(8分)如圖,在△ABC中,AD平分∠BAC,AB+BD=AC,∠BAC=75°,則∠C的度數(shù)為____.16、(8分)如圖1,在正方形和正方形中,邊在邊上,正方形繞點按逆時針方向旋轉(1)如圖2,當時,求證:;(2)在旋轉的過程中,設的延長線交直線于點.①如果存在某一時刻使得,請求出此時的長;②若正方形繞點按逆時針方向旋轉了,求旋轉過程中,點運動的路徑長.17、(10分)計算:(1)(2)18、(10分)為了更好的治理西流湖水質,保護環(huán)境,市治污公司決定購買10臺污水處理設備.現(xiàn)有A、B兩種型號的設備,其中每臺的價格,月處理污水量如下表:A型B型價格(萬元/臺)ab處理污水量(噸/月)240200經(jīng)調查:購買一臺A型設備比購買一臺B型設備多2萬元,購買2臺A型設備比購買3臺B型設備少6萬元.(1)求a,b的值;(2)經(jīng)預算:市治污公司購買污水處理設備的資金不超過105萬元,你認為該公司有哪幾種購買方案;(3)在(2)問的條件下,若每月要求處理西流湖的污水量不低于2040噸,為了節(jié)約資金,請你為治污公司設計一種最省錢的購買方案.B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)使式子的值為0,則a的值為_______.20、(4分)如圖是由6個形狀大小完全相同菱形組成的網(wǎng)格,若菱形的邊長為1,一個內角(∠O)為60°,△ABC的各頂點都在格點上,則BC邊上的高為______.21、(4分)關于x的一元一次方程ax+b=0的根是x=m,則一次函數(shù)y=ax+b的圖象與x軸交點的坐標是_____.22、(4分)如圖,在Rt△ABC中,∠ACB=90°,AB的垂直平分線DE交BC的延長線于F,若∠F=30°,DE=1,則EF的長是_____.23、(4分)在實數(shù)范圍內分解因式:3x2﹣6=_____.二、解答題(本大題共3個小題,共30分)24、(8分)在Rt△ABC中,∠C=90°,AC=6,BC=8,點D、E分別是斜邊AB和直角邊BC上的點,把△ABC沿著直線DE折疊,頂點B的對應點是點B′.(1)如圖①,如果點B′和點A重合,求CE的長.(2)如圖②,如果點B′落在直角邊AC的中點上,求BE的長.25、(10分)如圖,在?ABCD中,點O是對角線AC、BD的交點,AD⊥BD,且AB=10,AD=6,求AC的長.(結果保留根號)26、(12分)如果關于x的方程1+=的解,也是不等式組的解,求m的取值范圍.
參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、C【解析】分析:根據(jù)矩形對角線的性質可推出△ABO為等邊三角形.已知AB=5,易求AC的長.詳解:∵四邊形ABCD是矩形,∴AC=BD.∵AO=AC,BO=BD,∴AO=BO.又∵∠AOB=60°,∴△AOB是等邊三角形,∴AO=AB=5,∴AC=2AO=1.故選C.點睛:本題考查的是矩形的性質以及等邊三角形的判定和性質,熟記矩形的各種性質是解題的關鍵.2、B【解析】
根據(jù)平行四邊形的判定方法一一判斷即可.【詳解】解:A、∵AB∥CD,AB=CD,
∴四邊形ABCD是平行四邊形.
B、由AB∥CD,AD=BC,無法判斷四邊形是平行四邊形,四邊形可能是等腰梯形.
C、∵AB=CD,AD=BC
∴四邊形ABCD是平行四邊形.
D、∵AB∥CD,AD∥BC,
∴四邊形ABCD是平行四邊形.
故選B.本題考查平行四邊形的判定,解題的關鍵是熟練掌握平行四邊形的判定,屬于中考??碱}型.3、C【解析】
k=-<0,k<0時,y將隨x的增大而減?。驹斀狻拷猓骸遦=-<0,∴y將隨x的增大而減?。?5<-3,
∴y1>y1.
故選C.本題考查一次函數(shù)的圖象性質:當k>0,y隨x增大而增大;當k<0時,y將隨x的增大而減?。?、D【解析】
滿足的三個正整數(shù),稱為勾股數(shù),由此判斷即可.【詳解】解:、,此選項是勾股數(shù);、,此選項是勾股數(shù);、,此選項是勾股數(shù);、,此選項不是勾股數(shù).故選:.此題主要考查了勾股數(shù),關鍵是掌握勾股數(shù)的定義.5、D【解析】
根據(jù)樣本是總體中所抽取的一部分個體,可得答案.【詳解】解:為了了解這452名學生的課外閱讀情況,從中抽取50名學生進行統(tǒng)計,在這個問題中,樣本是從中抽取的50名學生的課外閱讀情況.故選:D.本題考查了總體、個體、樣本、樣本容量,解題要分清具體問題中的總體、個體與樣本,關鍵是明確考查的對象.總體、個體與樣本的考查對象是相同的,所不同的是范圍的大?。畼颖救萘渴菢颖局邪膫€體的數(shù)目,不能帶單位.6、C【解析】
一次函數(shù)與x軸的交點橫坐標為?1,且函數(shù)值y隨自變量x的增大而增大,根據(jù)一次函數(shù)的性質可判斷出解集.【詳解】解:點A(?1,0)在直線y=kx+b(k>0)上,∴當x=?1時,y=0,且函數(shù)值y隨x的增大而增大;∴關于x的不等式kx+b>0的解集是x>?1.故選:C.本題考查了一次函數(shù)與一元一次不等式.由于任何一元一次不等式都可以轉化的ax+b>0或ax+b<0(a、b為常數(shù),a≠0)的形式,所以解一元一次不等式可以看作:當一次函數(shù)值大于(或小于)0時,求自變量相應的取值范圍.7、D【解析】A.∵a>b,∴a-7>b-7,∴選項A正確;B.∵a>b,∴6+a>b+6,∴選項B正確;C.∵a>b,∴,∴選項C正確;D.∵a>b,∴-3a<-3b,∴選項D錯誤.故選D.8、B【解析】
根據(jù)位似圖形對應點連線過位似中心判斷即可.【詳解】解:點A、B、C、D都在如圖所示的由正方形組成的網(wǎng)格圖中,且線段CD與線段AB成位似圖形,則位似中心為點F,
故選:B.此題考查位似變換,解題關鍵是弄清位似中心的定義.二、填空題(本大題共5個小題,每小題4分,共20分)9、(a+3,b+2)【解析】
找到一對對應點的平移規(guī)律,讓點P的坐標也作相應變化即可.【詳解】點B的坐標為(-2,0),點B′的坐標為(1,2);橫坐標增加了1-(-2)=3;縱坐標增加了2-0=2;∵△ABC上點P的坐標為(a,b),∴點P的橫坐標為a+3,縱坐標為b+2,∴點P變換后的對應點P′的坐標為(a+3,b+2).解決本題的關鍵是根據(jù)已知對應點找到各對應點之間的變化規(guī)律.10、1.【解析】
先將化成最簡二次根式,然后根據(jù)同類二次根式得到被開方數(shù)相同可得出關于a的方程,解出即可.【詳解】∵與最簡二次根式是同類二次根式,且=1,∴a+1=3,解得:a=1.故答案為1.本題考查了同類二次根式的定義:化成最簡二次根式后,被開方數(shù)相同,這樣的二次根式叫做同類二次根式.11、1.1【解析】
設相距30cm的兩地實際距離為xcm,根據(jù)題意可得方程l:1000=30:x,解此方程即可求得答案,注意統(tǒng)一單位.【詳解】解:設相距30cm的兩地實際距離為xcm,
根據(jù)題意得:l:1000=30:x,
解得:x=110000,
∵110000cm=1.1km,
∴甲,乙兩地的實際距離是1.1千米.
故答案為:1.1.此題考查了比例尺的性質.此題比較簡單,解題的關鍵是注意理解題意,根據(jù)題意列方程,注意統(tǒng)一單位.12、-1【解析】
根據(jù)分式值為0得出分子等于0求出x的值,再根據(jù)分母不等于0排除x=1,即可得出答案.【詳解】∵分式的值為0∴解得:x=1或x=-1又x-1≠0∴x=-1故答案為-1.本題考查的是分式的值為0,屬于基礎題型,注意分式值為0則分子等于0,但分母不等于0.13、>【解析】
分別把點A(-1,y1),點B(-1,y1)的坐標代入函數(shù)y=3x,求出點y1,y1的值,并比較出其大小即可.【詳解】∵點A(-1,y1),點B(-1,y1)是函數(shù)y=3x的圖象上的點,∴y1=-3,y1=-6,∵-3>-6,∴y1>y1.三、解答題(本大題共5個小題,共48分)14、(1)3-2+2;(2)2.【解析】
(1)先算負整數(shù)指數(shù)冪,0次冪,絕對值,化簡二次根式,再進一步合并即可;(2)利用二次根式混合運算順序,把二次根式化簡,先算乘除再算加減.【詳解】(1)解:原式=4-1-2+2=3-2+2.(2)解:原式=2+1-3+2=2.此題考查實數(shù)和二次根式的混合運算,掌握運算順序與化簡的方法是解決問題的關鍵.15、35°.【解析】
先在AC上截取AE=AB,連接DE.想辦法求出∠B:∠C的值即可解決問題.【詳解】在AC上截取AE=AB,連接DE∵∠BAD=∠DAE,AD=AD∴△ABD≌△AED(SAS),∴∠B=∠AED,BD=DE又∵AB+BD=AC,∴CE=BD=DE∴∠C=∠EDC,∴∠B=∠AED=2∠C∴∠B:∠C=2:1,∵∠BAC=75°,∴∠B+∠C=180°﹣75°=105°,∴∠B=70°,∠C=35°,故答案為35°.本題考查了角平分線的性質,全等三角形的判定和性質等知識,以及三角形的外角等于不相鄰的兩個內角之和.作出輔助線是解答本題的關鍵.16、(1)見詳解;(2);.【解析】
(1)由正方形的性質得出AD=AB,AG=AE,∠BAD=∠EAG=90°,由∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,推出∠BAE=∠DAG,由SAS即可證得△DAG≌△BAE;(2)①由AB=2,AE=1,由勾股定理得AF=AE=,易證△ABF是等腰三角形,由AE=EF,則直線BE是AF的垂直平分線,設BE的延長線交AF于點O,交AD于點H,則OE=OA=,由勾股定理得OB=,由cos∠ABO=,cos∠ABH=,求得BH=,由勾股定理得AH==,則DH=AD?AH=2?,由∠DHP=∠BHA,∠BAH=∠DPH=90°,證得△BAH∽△DPH,得出,即可求得DP;②由△DAG≌△BAE,得出∠ABE=∠ADG,由∠BPD=∠BAD=90°,則點P的運動軌跡為以BD為直徑的,由正方形的性質得出BD=AB=2,由正方形AEFG繞點A按逆時針方向旋轉了60°,得出∠BAE=60°,由AB=2AE,得出∠BEA=90°,∠ABE=30°,B、E、F三點共線,同理D、F、G三點共線,則P與F重合,得出∠ABP=30°,則所對的圓心角為60°,由弧長公式即可得出結果.【詳解】解答:(1)證明:在正方形ABCD和正方形AEFG中,AD=AB,AG=AE,∠BAD=∠EAG=90°,∵∠BAE+∠EAD=∠BAD,∠DAG+∠EAD=∠EAG,∴∠BAE=∠DAG,在△DAG和△BAE中,,∴△DAG≌△BAE(SAS);∴BE=DG;(2)解:①∵AB=2AE=2,∴AE=1,由勾股定理得,AF=AE=,∵BF=BC=2,∴AB=BF=2,∴△ABF是等腰三角形,∵AE=EF,∴直線BE是AF的垂直平分線,設BE的延長線交AF于點O,交AD于點H,如圖3所示:則OE=OA=,∴OB=,∵cos∠ABO=,cos∠ABH=,∴BH=,AH==,∴DH=AD?AH=2?,∵∠DHP=∠BHA,∠BAH=∠DPH=90°,∴△BAH∽△DPH,∴,即∴DP=;②∵△DAG≌△BAE,∴∠ABE=∠ADG,∵∠BPD=∠BAD=90°,∴點P的運動軌跡為以BD為直徑的,BD=AB=2,∵正方形AEFG繞點A按逆時針方向旋轉了60°,∴∠BAE=60°,∵AB=2AE,∴∠BEA=90°,∠ABE=30°,∴B、E、F三點共線,同理D、F、G三點共線,∴P與F重合,∴∠ABP=30°,∴所對的圓心角為60°,∴旋轉過程中點P運動的路線長為:.本題是四邊形綜合題,主要考查了正方形的性質、旋轉的性質、等腰三角形的性質、等腰直角三角形的性質、全等三角形的判定與性質、相似三角形的判定與性質、圓周角定理、勾股定理、三角函數(shù)等知識,綜合性強,難度大,知識面廣.17、(1)14;(2)【解析】
(1)先根據(jù)二次根式的性質把各個根式化成最簡二次根式,再合并同類二次根式即可.(2)根據(jù)多項式乘以多項式的運算法則計算即可.【詳解】解:(1)原式===14(2)原式==本題考查了二次根式的性質和多項式與多項式相乘,解題的關鍵是準確的化簡二次根式,以及掌握乘法運算法則.18、(1);(2)①A型設備0臺,B型設備10臺;②A型設備1臺,B型設備9臺;③A型設備2臺,B型設備8臺.;(3)為了節(jié)約資金,應選購A型設備1臺,B型設備9臺.【解析】
(1)根據(jù)“購買一臺A型設備比購買一臺B型設備多2萬元,購買2臺A型設備比購買3臺B型設備少6萬元”即可列出方程組,繼而進行求解;(2)可設購買污水處理設備A型設備x臺,B型設備(10-x)臺,則有12x+10(10-x)≤105,解之確定x的值,即可確定方案;(3)因為每月要求處理流溪河兩岸的污水量不低于2040噸,所以有240x+200(10-x)≥2040,解之即可由x的值確定方案,然后進行比較,作出選擇.【詳解】(1)根據(jù)題意得:,∴;(2)設購買污水處理設備A型設備x臺,B型設備(10?x)臺,則:12x+10(10?x)?105,∴x?2.5,∵x取非負整數(shù),∴x=0,1,2,∴有三種購買方案:①A型設備0臺,B型設備10臺;②A型設備1臺,B型設備9臺;③A型設備2臺,B型設備8臺.(3)由題意:240x+200(10?x)?2040,∴x?1,又∵x?2.5,x取非負整數(shù),∴x為1,2.當x=1時,購買資金為:12×1+10×9=102(萬元),當x=2時,購買資金為:12×2+10×8=104(萬元),∴為了節(jié)約資金,應選購A型設備1臺,B型設備9臺.此題考查一元一次不等式的應用,二元一次方程組的應用,解題關鍵在于理解題意列出方程.一、填空題(本大題共5個小題,每小題4分,共20分)19、【解析】
根據(jù)分式值為0,分子為0,分母不為0解答即可.【詳解】∵的值為0,∴2a-1=0,a+2≠0,∴a=.故答案為:本題考查分式為0的條件,要使分式值為0,則分子為0,分母不為0;熟練掌握分式為0的條件是解題關鍵.20、【解析】
如圖,連接EA、EC,先證明∠AEC=90°,E、C、B共線,求出AE即可.【詳解】解:如圖,連接EA,EC,∵菱形的邊長為1,由題意得∠AEF=30°,∠BEF=60°,AE=,∴∠AEC=90°,∵∠ACE=∠ACG=∠BCG=60°,∴∠ECB=180°,∴E、C、B共線,∴AE即為△ACB的BC邊上的高,∴AE=,故答案為.本題考查菱形的性質,特殊三角形邊角關系等知識,解題的關鍵是添加輔助線構造直角三角形解決問題,屬于中考常考題型.21、(m,0).【解析】分析:關于x的一元一次方程ax+b=0的根是x=m,即x=m時,函數(shù)值為0,所以直線過點(m,0),于是得到一次函數(shù)y=ax+b的圖象與x軸交點的坐標.詳解:關于x的一元一次方程ax+b=0的根是x=m,則一次函數(shù)y=ax+b的圖象與x軸交點的坐標為(m,0).故答案為:(m,0).點睛:本題主要考查了一次函數(shù)與一元一次方程:任何一元一次方程都可以轉化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉化為:當某個一次函數(shù)的值為0時,求相應的自變量的值.從圖象上看,相當于已知直線y=ax+b確定它與x軸的交點的橫坐標的值.22、1【解析】
連接BE,根據(jù)垂直平分線的性質、直角三角形的性質,說明∠CBE=∠F,進一步說明BE=EF,,然后再根據(jù)直角三角形中,30°所對的直角邊等于斜邊的一半即可.【詳解】解:如圖:連接BE∵AB的垂直平分線DE交BC的延長線于F,∴AE=BE,∠A+∠AED=90°,∵在Rt△ABC中,∠ACB=90°,∴∠F+∠CEF=90°,∵∠AED=∠FEC,∴∠A=∠F=30°,∴∠ABE=∠A=30°,∠ABC=90°﹣∠A=60°,∴∠CBE=∠ABC﹣∠ABE=30°,∴∠CBE=∠F,∴BE=EF,在Rt△BED中,BE=1DE=1×1=1,∴EF=1.故答案為:1.本題考查了垂直平分線的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國混凝土預制樁行業(yè)發(fā)展前景及投資戰(zhàn)略咨詢報告
- 排水防澇設施功能提升項目實施范圍與內容
- 供熱管網(wǎng)及供熱設施提升改造技術路線與工藝選擇
- 中國月見草油市場發(fā)展前景預測及投資戰(zhàn)略研究報告
- 零碳數(shù)據(jù)算力中心項目可行性研究報告
- 抗裂砂漿合同范本
- 一次函數(shù)與一元一次不等式(基礎)知識講解
- 牛肝菌買賣合同范本
- 2025年床式振動干燥機項目投資可行性研究分析報告
- 河南醫(yī)藥制造業(yè)市場前景及投資研究報告
- 2023-2024學年安徽省合肥市瑤海區(qū)八年級(下)期中數(shù)學試卷(含解析)
- 物業(yè)小區(qū)安全生產(chǎn)隱患排查治理表
- 【體能大循環(huán)】聚焦體能循環(huán)-探索運動奧秘-幼兒園探究體能大循環(huán)有效開展策略課件
- 《Unit 10 You're supposed to shake hands》單元檢測題及答案
- 華為云DevSecOps質量效能白皮書
- 師德師風承諾書師德師風個人檔案表
- TSN 解決方案白皮書
- 學生公寓服務培訓課件
- 完整2024年開工第一課課件
- 2016-2023年湖南工程職業(yè)技術學院高職單招(英語/數(shù)學/語文)筆試歷年參考題庫含答案解析
- 電力預防性試驗課件
評論
0/150
提交評論