2023-2024學年廣東東莞市高三下第一次檢測試題考試數學試題_第1頁
2023-2024學年廣東東莞市高三下第一次檢測試題考試數學試題_第2頁
2023-2024學年廣東東莞市高三下第一次檢測試題考試數學試題_第3頁
2023-2024學年廣東東莞市高三下第一次檢測試題考試數學試題_第4頁
2023-2024學年廣東東莞市高三下第一次檢測試題考試數學試題_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年廣東東莞市高三下第一次檢測試題考試數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在三棱錐中,平面,,,,,分別是棱,,的中點,則異面直線與所成角的余弦值為A.0 B. C. D.12.已知函數,其中表示不超過的最大正整數,則下列結論正確的是()A.的值域是 B.是奇函數C.是周期函數 D.是增函數3.數列滿足:,則數列前項的和為A. B. C. D.4.若,則下列不等式不能成立的是()A. B. C. D.5.某醫(yī)院擬派2名內科醫(yī)生、3名外科醫(yī)生和3名護士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內科醫(yī)生、外科醫(yī)生和護士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種6.設雙曲線的一條漸近線為,且一個焦點與拋物線的焦點相同,則此雙曲線的方程為()A. B. C. D.7.平行四邊形中,已知,,點、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.8.已知復數(為虛數單位)在復平面內對應的點的坐標是()A. B. C. D.9.設,分別為雙曲線(a>0,b>0)的左、右焦點,過點作圓的切線與雙曲線的左支交于點P,若,則雙曲線的離心率為()A. B. C. D.10.函數y=sin2x的圖象可能是A. B.C. D.11.設等差數列的前項和為,若,,則()A.21 B.22 C.11 D.1212.設函數的定義域為,命題:,的否定是()A., B.,C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.若函數與函數,在公共點處有共同的切線,則實數的值為______.14.平面向量與的夾角為,,,則__________.15.正方體中,是棱的中點,是側面上的動點,且平面,記與的軌跡構成的平面為.①,使得;②直線與直線所成角的正切值的取值范圍是;③與平面所成銳二面角的正切值為;④正方體的各個側面中,與所成的銳二面角相等的側面共四個.其中正確命題的序號是________.(寫出所有正確命題的序號)16.將一顆質地均勻的正方體骰子(每個面上分別寫有數字1,2,3,4,5,6)先后拋擲2次,觀察向上的點數,則點數之和是6的的概率是___.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若,求證:.(2)討論函數的極值;(3)是否存在實數,使得不等式在上恒成立?若存在,求出的最小值;若不存在,請說明理由.18.(12分)已知橢圓C:()的左、右焦點分別為,,離心率為,且過點.(1)求橢圓C的方程;(2)過左焦點的直線l與橢圓C交于不同的A,B兩點,若,求直線l的斜率k.19.(12分)貧困人口全面脫貧是全面建成小康社會的標志性指標.黨的十九屆四中全會提出“堅決打贏脫貧攻堅戰(zhàn),建立解決相對貧困的長效機制”對當前和下一個階段的扶貧工作進行了前瞻性的部署,即2020年要通過精準扶貧全面消除絕對貧困,實現(xiàn)全面建成小康社會的奮斗目標.為了響應黨的號召,某市對口某貧困鄉(xiāng)鎮(zhèn)開展扶貧工作.對某種農產品加工生產銷售進行指導,經調查知,在一個銷售季度內,每售出一噸該產品獲利5萬元,未售出的商品,每噸虧損2萬元.經統(tǒng)計,兩市場以往100個銷售周期該產品的市場需求量的頻數分布如下表:市場:需求量(噸)90100110頻數205030市場:需求量(噸)90100110頻數106030把市場需求量的頻率視為需求量的概率,設該廠在下個銷售周期內生產噸該產品,在、兩市場同時銷售,以(單位:噸)表示下一個銷售周期兩市場的需求量,(單位:萬元)表示下一個銷售周期兩市場的銷售總利潤.(1)求的概率;(2)以銷售利潤的期望為決策依據,確定下個銷售周期內生產量噸還是噸?并說明理由.20.(12分)在中,內角所對的邊分別為,已知,且.(I)求角的大??;(Ⅱ)若,求面積的取值范圍.21.(12分)某社區(qū)服務中心計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶5元,售價每瓶7元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完.根據往年銷售經驗,每天需求量與當天最高氣溫(單位:攝氏度℃)有關.如果最高氣溫不低于25,需求量為600瓶;如果最高氣溫位于區(qū)間,需求量為500瓶;如果最高氣溫低于20,需求量為300瓶.為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份各天的最高氣溫數據,得下面的頻數分布表:最高氣溫天數414362763以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;(2)設六月份一天銷售這種酸奶的利潤為(單位:元),當六月份這種酸奶一天的進貨量為(單位:瓶)時,的數學期望的取值范圍?22.(10分)已知,,分別為內角,,的對邊,若同時滿足下列四個條件中的三個:①;②;③;④.(1)滿足有解三角形的序號組合有哪些?(2)在(1)所有組合中任選一組,并求對應的面積.(若所選條件出現(xiàn)多種可能,則按計算的第一種可能計分)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據題意可得平面,,則即異面直線與所成的角,連接CG,在中,,易得,所以,所以,故選B.2.C【解析】

根據表示不超過的最大正整數,可構建函數圖象,即可分別判斷值域、奇偶性、周期性、單調性,進而下結論.【詳解】由表示不超過的最大正整數,其函數圖象為選項A,函數,故錯誤;選項B,函數為非奇非偶函數,故錯誤;選項C,函數是以1為周期的周期函數,故正確;選項D,函數在區(qū)間上是增函數,但在整個定義域范圍上不具備單調性,故錯誤.故選:C【點睛】本題考查對題干的理解,屬于函數新定義問題,可作出圖象分析性質,屬于較難題.3.A【解析】分析:通過對an﹣an+1=2anan+1變形可知,進而可知,利用裂項相消法求和即可.詳解:∵,∴,又∵=5,∴,即,∴,∴數列前項的和為,故選A.點睛:裂項相消法是最難把握的求和方法之一,其原因是有時很難找到裂項的方向,突破這一難點的方法是根據式子的結構特點,常見的裂項技巧:(1);(2);(3);(4);此外,需注意裂項之后相消的過程中容易出現(xiàn)丟項或多項的問題,導致計算結果錯誤.4.B【解析】

根據不等式的性質對選項逐一判斷即可.【詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【點睛】本題考查不等關系和不等式,屬于基礎題.5.B【解析】

根據條件2名內科醫(yī)生,每個村一名,3名外科醫(yī)生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,根據排列組合進行計算即可.【詳解】2名內科醫(yī)生,每個村一名,有2種方法,3名外科醫(yī)生和3名護士,平均分成兩組,要求外科醫(yī)生和護士都有,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,若甲村有1外科,2名護士,則有C3若甲村有2外科,1名護士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點睛】本題主要考查了分組分配問題,解決這類問題的關鍵是先分組再分配,屬于??碱}型.6.C【解析】

求得拋物線的焦點坐標,可得雙曲線方程的漸近線方程為,由題意可得,又,即,解得,,即可得到所求雙曲線的方程.【詳解】解:拋物線的焦點為可得雙曲線即為的漸近線方程為由題意可得,即又,即解得,.即雙曲線的方程為.故選:C【點睛】本題主要考查了求雙曲線的方程,屬于中檔題.7.C【解析】

將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點睛】本題考查向量的幾何意義,考查向量的線性運算,將用向量和表示是關鍵,是基礎題.8.A【解析】

直接利用復數代數形式的乘除運算化簡,求得的坐標得出答案.【詳解】解:,在復平面內對應的點的坐標是.故選:A.【點睛】本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,屬于基礎題.9.C【解析】

設過點作圓的切線的切點為,根據切線的性質可得,且,再由和雙曲線的定義可得,得出為中點,則有,得到,即可求解.【詳解】設過點作圓的切線的切點為,,所以是中點,,,.故選:C.【點睛】本題考查雙曲線的性質、雙曲線定義、圓的切線性質,意在考查直觀想象、邏輯推理和數學計算能力,屬于中檔題.10.D【解析】分析:先研究函數的奇偶性,再研究函數在上的符號,即可判斷選擇.詳解:令,因為,所以為奇函數,排除選項A,B;因為時,,所以排除選項C,選D.點睛:有關函數圖象的識別問題的常見題型及解題思路:(1)由函數的定義域,判斷圖象的左、右位置,由函數的值域,判斷圖象的上、下位置;(2)由函數的單調性,判斷圖象的變化趨勢;(3)由函數的奇偶性,判斷圖象的對稱性;(4)由函數的周期性,判斷圖象的循環(huán)往復.11.A【解析】

由題意知成等差數列,結合等差中項,列出方程,即可求出的值.【詳解】解:由為等差數列,可知也成等差數列,所以,即,解得.故選:A.【點睛】本題考查了等差數列的性質,考查了等差中項.對于等差數列,一般用首項和公差將已知量表示出來,繼而求出首項和公差.但是這種基本量法計算量相對比較大,如果能結合等差數列性質,可使得計算量大大減少.12.D【解析】

根據命題的否定的定義,全稱命題的否定是特稱命題求解.【詳解】因為:,是全稱命題,所以其否定是特稱命題,即,.故選:D【點睛】本題主要考查命題的否定,還考查了理解辨析的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

函數的定義域為,求出導函數,利用曲線與曲線公共點為由于在公共點處有共同的切線,解得,,聯(lián)立解得的值.【詳解】解:函數的定義域為,,,設曲線與曲線公共點為,由于在公共點處有共同的切線,∴,解得,.由,可得.聯(lián)立,解得.故答案為:.【點睛】本題考查函數的導數的應用,切線方程的求法,考查轉化思想以及計算能力,是中檔題.14.【解析】

由平面向量模的計算公式,直接計算即可.【詳解】因為平面向量與的夾角為,所以,所以;故答案為【點睛】本題主要考查平面向量模的計算,只需先求出向量的數量積,進而即可求出結果,屬于基礎題型.15.①②③④【解析】

取中點,中點,中點,先利用中位線的性質判斷點的運動軌跡為線段,平面即為平面,畫出圖形,再依次判斷:①利用等腰三角形的性質即可判斷;②直線與直線所成角即為直線與直線所成角,設正方體的棱長為2,進而求解;③由,取為中點,則,則即為與平面所成的銳二面角,進而求解;④由平行的性質及圖形判斷即可.【詳解】取中點,連接,則,所以,所以平面即為平面,取中點,中點,連接,則易證得,所以平面平面,所以點的運動軌跡為線段,平面即為平面.①取為中點,因為是等腰三角形,所以,又因為,所以,故①正確;②直線與直線所成角即為直線與直線所成角,設正方體的棱長為2,當點為中點時,直線與直線所成角最小,此時,;當點與點或點重合時,直線與直線所成角最大,此時,所以直線與直線所成角的正切值的取值范圍是,②正確;③與平面的交線為,且,取為中點,則即為與平面所成的銳二面角,,所以③正確;④正方體的各個側面中,平面,平面,平面,平面與平面所成的角相等,所以④正確.故答案為:①②③④【點睛】本題考查直線與平面的空間位置關系,考查異面直線成角,二面角,考查空間想象能力與轉化思想.16.【解析】

先求出基本事件總數6×6=36,再由列舉法求出“點數之和等于6”包含的基本事件的個數,由此能求出“點數之和等于6”的概率.【詳解】基本事件總數6×6=36,點數之和是6包括共5種情況,則所求概率是.故答案為【點睛】本題考查古典概率的求法,是基礎題,解題時要認真審題,注意列舉法的合理運用.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析;(2)見解析;(3)存在,1.【解析】

(1),求出單調區(qū)間,進而求出,即可證明結論;(2)對(或)是否恒成立分類討論,若恒成立,沒有極值點,若不恒成立,求出的解,即可求出結論;(3)令,可證恒成立,而,由(2)得,在為減函數,在上單調遞減,在都存在,不滿足,當時,設,且,只需求出在單調遞增時的取值范圍即可.【詳解】(1),,,當時,,當時,,∴,故.(2)由題知,,,①當時,,所以在上單調遞減,沒有極值;②當時,,得,當時,;當時,,所以在上單調遞減,在上單調遞增.故在處取得極小值,無極大值.(3)不妨令,設在恒成立,在單調遞增,,在恒成立,所以,當時,,由(2)知,當時,在上單調遞減,恒成立;所以不等式在上恒成立,只能.當時,,由(1)知在上單調遞減,所以,不滿足題意.當時,設,因為,所以,,即,所以在上單調遞增,又,所以時,恒成立,即恒成立,故存在,使得不等式在上恒成立,此時的最小值是1.【點睛】本題考查導數綜合應用,涉及到函數的單調性、極值最值、不等式證明,考查分類討論思想,意在考查直觀想象、邏輯推理、數學計算能力,屬于較難題.18.(1)(2)直線l的斜率為或【解析】

(1)根據已知列出方程組即可解得橢圓方程;(2)設直線方程,與橢圓方程聯(lián)立,轉化為,借助向量的數量積的坐標表示,及韋達定理即可求得結果.【詳解】(1)由題意得解得故橢圓C的方程為.(2)直線l的方程為,設,,則由方程組消去y得,,所以,,由,得,所以,又所以,即所以,因此,直線l的斜率為或.【點睛】本題考查橢圓的標準方程,考查直線和橢圓的位置關系,考查學生的計算求解能力,難度一般.19.(1);(2)噸,理由見解析【解析】

(1)設“市場需求量為90,100,110噸”分別記為事件,,,“市場需求量為90,100,110噸”分別記為事件,,,由題可得,,,,,,代入,計算可得答案;(2)可取180,190,200,210,220,求出噸和噸時的期望,比較大小即可.【詳解】(1)設“市場需求量為90,100,110噸”分別記為事件,,,“市場需求量為90,100,110噸”分別記為事件,,,則,,,,,,;(2)可取180,190,200,210,220,當時,當時,.,時,平均利潤大,所以下個銷售周期內生產量噸.【點睛】本題考查離散型隨機變量的期望,是中檔題.20.(Ⅰ);(Ⅱ)【解析】

(I)根據,利用二倍角公式得到,再由輔助角公式得到,然后根據正弦函數的性質求解.(Ⅱ)根據(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【詳解】(I)因為,所以,,,或,或,因為,所以所以;(Ⅱ)由余弦定理得:,所以,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論