




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
信號與系統(tǒng)SignalsandSystems吉林大學TheAnalysisofDiscrete-TimeSystemsinthez-DomainThez-TransformDefinitionofthez-TransformDefinitionofthez-TransformIntuitionontheRelationbetweenZTandLTLT:Let:Definitionofthez-TransformDefinitionBilateral(two-sided)z-Transform:Unilateral(one-sided)z-Transform:Thetransformpairnotation:信號與系統(tǒng)SignalsandSystems吉林大學Thez-TransformCommonz-transformpairsCommonz-transformpairsUnitSampleSequenceCommonz-transformpairsOne-sideExponentialSequencewhereaisarealorcomplexnumber.UnitStepSequenceCommonz-transformpairswhere
aisarealorcomplexnumber.信號與系統(tǒng)SignalsandSystems吉林大學TheRegionofConvergenceforthez-TransformDefinitionTheRegionofConvergenceforthez-TransformThesetofallcomplexnumberszsuchthatthesummationontheright-handside
convergesiscalledtheregionofconvergence(ROC)ofthez-transformF(z).F(z)converges:f(k)z-kisabsolutelysummableFinite-durationsequenceTheRegionofConvergenceforthez-Transformf(k)=0,k
<k1,k>k2,k1<k2k1<0,k2>0:
k1<0,k2
0:k10,k2
>0:0<|z|<
|z|<
|z|>0Example:CausalsequenceTheRegionofConvergenceforthez-Transformf(k)=0,k<0Example:z-planeak
(k),aisarealorcomplexnumber.AnticausalsequenceTheRegionofConvergenceforthez-TransformExample:f(k)=0,k≥0f(k)=-ak
(-k-1),aisarealorcomplexnumber.Two-sidedsequenceTheRegionofConvergenceforthez-Transformk=-∞→+∞
0<R1<R2<:R1<|z|<R2
R1>R2
:
ROCdoesnotconvergeTheRegionofConvergenceforthez-TransformROCisboundedbypolesorextendstoinfinity.F(z)isrational:f(k)ROCrightsidedoutsidetheoutermostpole——outsidethecircleofradiusequaltothelargestmagnitudeofthepolesofF(z)leftsidedinsidetheinnermostnonzeropole——insidethecircleofradiusequaltothesmallestmagnitudeofthepolesofF(z)otherthananyatz=0andextendinginwardtoandpossiblyincludingz=0.信號與系統(tǒng)SignalsandSystems吉林大學Propertiesofthez-Transform——LinearityIff1(k)
F1(z),
1<
z
<
1,f2(k)
F2(z),
2<
z
<
2,thenLinearityExample:Iff1(k)
F1(z),
1<
z
<
1,f2(k)
F2(z),
2<
z
<
2,thenLinearityExample:信號與系統(tǒng)SignalsandSystems吉林大學Propertiesofthez-Transform——TimeShiftingTimeShiftingExample:Bilateralz-TransformIff(k)
F(z),
<
z
<
,thenwheremisapositiveinteger.TimeShiftingProof:Unilateralz-Transform——RightshiftIff(k)
F(z),
z
>
,thenwheremisapositiveinteger.TimeShiftingUnilateralz-Transform——RightshiftIff(k)=0,k<0,thenExample:Iff(k)
F(z),
z
>
,thenwheremisapositiveinteger.TimeShiftingUnilateralz-Transform——LeftshiftIff(k)
F(z),
z
>
,thenwheremisapositiveinteger.Proof:TimeShiftingUnilateralz-Transform——LeftshiftIff(k)
F(z),
z
>
,thenwheremisapositiveinteger.Example:
(k+1)信號與系統(tǒng)SignalsandSystems吉林大學Propertiesofthez-Transform——Scalinginthez-DomainScalinginthez-DomainProof:Iff(k)
F(z),R1<|z|<R2
,thenaisanonzerorealorcomplexnumber.ROCofF(z):ROCof
:Scalinginthez-DomainIff(k)
F(z),R1<|z|<R2
,thenaisanonzerorealorcomplexnumber.Example:
aksin(
k)
(k),0<a<1Scalinginthez-DomainIff(k)
F(z),R1<|z|<R2
,thenaisanonzerorealorcomplexnumber.Example:(-1)k
(k)信號與系統(tǒng)SignalsandSystems吉林大學Propertiesofthez-Transform——ConvolutionConvolutionProof:Iff1(k)
F1(z),
1<z<
1,f2(k)
F2(z),
2<z<
2,thenConvolutionIff1(k)
F1(z),
1<z<
1,f2(k)
F2(z),
2<z<
2,thenExample:(k+1)
(k)LTIsystems:信號與系統(tǒng)SignalsandSystems吉林大學Propertiesofthez-Transform——DifferentiationandIntegralinthez-DomainDifferentiationinthez-DomainProof:Iff(k)
F(z),
<
z
<
,then
wherekisanypositiveinteger.Differentiationinthez-DomainIff(k)
F(z),
<
z
<
,then
wherekisanypositiveinteger.Example:Ifa=1,thenDifferentiationinthez-DomainIff(k)
F(z),
<
z
<
,then
wherekisanypositiveinteger.Integralinthez-DomainProof:Iff(k)
F(z),
<
z
<
,then
(misaninteger,andk+m>0)Integralinthez-DomainIff(k)
F(z),
<
z
<
,then
(misaninteger,andk+m>0)Example:Integralinthez-DomainIff(k)
F(z),
<
z
<
,then
(misaninteger,andk+m>0)m=0,k>0:信號與系統(tǒng)SignalsandSystems吉林大學Propertiesofthez-Transform——Reflectioninthek-domainReflectioninthek-domainProof:Iff(k)
F(z),
<
z
<
,then
Example:信號與系統(tǒng)SignalsandSystems吉林大學Propertiesofthez-Transform——SummationSummationProof:Iff(k)
F(z),
<
z
<
,then
Example:信號與系統(tǒng)SignalsandSystems吉林大學Propertiesofthez-Transform——Initial-ValueTheoremandFinal-ValueTheoremInitial-ValueTheoremProof:Iff(k)=0,k<0,andf(k)
F(z),then
Example:0Thez-transformofacausalsequencef(k)isfindf(0).Final-ValueTheoremProof:Iff(k)=0,k<0,f(k)
F(z),a<
z<,0≤a<1,then
Final-ValueTheoremIff(k)=0,k<0,f(k)
F(z),a<
z<,0≤a<1,then
Example:f(k)=0,k<0. aisarealnumber,findf(
).Final-ValueTheorem√√××Final-ValueTheoremIff(k)=0,k<0,f(k)
F(z),a<
z<,0≤a<1,then
Example:f(k)=0,k<0. aisarealnumber,findf(
).Final-ValueTheoremIfF(z)isrationalandthepolesof(z-1)F(z)havemagnitudes<1,then
Example:Thez-transformofacausalsequencef(k)is
Poles:信號與系統(tǒng)SignalsandSystems吉林大學TheInversez-TransformTheInversez-Transform(IZT)Integral:DefinitionalongacounterclockwiseclosedcircularcontourthatiscontainedintheROCofF(z).AlternativeproceduresPower-seriesexpansionsPartialfractionexpansionsROCandtheInversez-TransformROCf(k)Causalsequence|z|>af1(k)e
(k)Anticausalsequence|z|<bf2(k)e
(-k-1)Two-sidedsequencea<|z|<b
f1(k)e(k)+
f2(k)e
(-k-1)信號與系統(tǒng)SignalsandSystems吉林大學TheInversez-Transform——PartialfractionexpansionsPartialfractionexpansionsRationalpolynomial:Procedure:PartialfractionexpansionsF(z)f(k)×zIZTPartialfractionexpansions
DistinctPolesSupposethatthepolesz1,z1,…,zNofF(z)aredistinctandareallnonzero.(1)|z|>2;(2)|z|<1;(3)1<|z|<2(1)Example:Partialfractionexpansions
DistinctPolesSupposethatthepolesz1,z1,…,zNofF(z)aredistinctandareallnonzero.(1)|z|>2;(2)|z|<1;(3)1<|z|<2(2)Example:Partialfractionexpansions
DistinctPolesSupposethatthepolesz1,z1,…,zNofF(z)aredistinctandareallnonzero.(1)|z|>2;(2)|z|<1;(3)1<|z|<2(3)Example:Partialfractionexpansions
DistinctPolesz1,2=ae±jbROC:|z|>
Complex
Poles:Partialfractionexpansions
DistinctPolesz1,2=ae±jbComplex
Poles:Example:PartialfractionexpansionsRepeatePolesSupposethatthepolez1isrepeatedrtimes.Matchingcoefficients:Example:PartialfractionexpansionsExample:Step1DividethroughtoobtainwhereF1(z)isstrictlyproper.Step2CarryoutthepartialfractionexpansionofF1(z)and,knowingtheROC,obtaintheinversez-transform.信號與系統(tǒng)SignalsandSystems吉林大學z-DomainAnalysis—TransformoftheInput/outputDifferenceEquationTransformoftheInput/outputDifferenceEquationLTIsystem:Input:f(k)=0,k<0Initialstate:y(-1),y(-2),…,y(-n)z-Transform:Y(z)=Yzi(z)+Yzs(z)IZT:y(k)=yzi(k)+yzs(k)TransformoftheInput/outputDifferenceEquationExample:y(k)-y(k-1)-2y(k-2)=f(k)+2f(k-2),y(-1)=2,y(-2)=-0.5,f(k)=e(k).Findyzi(k),yzs(k),y(k),k≥0.TransformoftheInput/outputDifferenceEquationExample:y(k)-y(k-1)-2y(k-2)=f(k)+2f(k-2),y(-1)=2,y(-2)=-0.5,f(k)=e(k).Findyzi(k),yzs(k),y(k),k≥0.TransformoftheInput/outputDifferenceEquationExample:y(k)-y(k-1)-2y(k-2)=f(k)+2f(k-2),y(-1)=2,y(-2)=-0.5,f(k)=e(k).Findyzi(k),yzs(k),y(k),k≥0.信號與系統(tǒng)SignalsandSystems吉林大學z-DomainAnalysis—TheSystemFunctionTheSystemFunction(TransferFunction)DefinitionDeterminationofthesystemfunction(1)
H(z)=Yzs(z)/F(z)(2)H(z)=Z[h(k)]SystemFunctionofInterconnectionsSeriesconnectionH(z)ParallelconnectionH(z)Parallelconnection
H(z)SystemFunctionforInterconnectionsofLTISystemsExample:Determinethezero-stateoftheLTIsystem.Pole-zeroPlotoftheSystemFunctionPole-zeroplotExample:Aplotofthelocationsinthecomplexplaneofthepolesandzeros.ZerosrootsofN(z)=0——○ZerosrootsofD(z)=0——×zeros:z=0poles:z=1信號與系統(tǒng)SignalsandSystems吉林大學z-DomainAnalysis—BlockDiagramRepresentationofDiscrete-timeSystemsinthez-DomainBlockDiagramRepresentationofDiscrete-timeSystemsinthez-DomainMultiplicationbyacoefficientAdderUnitdelayelement(f(-1)=0)信號與系統(tǒng)SignalsandSystems吉林大學CausalityandStabilityofDiscrete-TimeSystemsCausalityandStabilityofDiscrete-TimeSystemsCausalityk-domain:LTIsystemcausality
h(k)=0,k<0Proof:Necessity:Letf(k)=d(k)
f(k)=0fork<0,theny(k)=h(k).Ifthesystemiscausal,thenh(k)=0fork<0.Sufficiency:
f(k)=0,k<0
k-i<0(i>k),f(k-i)=0,thenIfh(k)=0,k<0
h(i)=0,i<0,then
yzs(k)=0,k<0CausalityandStabilityofDiscrete-TimeSystemsCausalityk-domain:LTIsystemcausality
h(k)=0,k<0z-domain: ,|z|>R0
AdiscreteLTIsystemiscausalifandonlyifth
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 化工助劑銷售合同范本
- 公司銷售授權(quán)合同范本
- 專屬模特簽約合同范本
- 北京新房二手房合同范本
- 上海小產(chǎn)權(quán)合同范本
- 剛果勞務(wù)雇傭合同范本
- 全國中圖版高中信息技術(shù)必修一第四單元加工表達信息第二節(jié)《創(chuàng)作電子作品》教學設(shè)計
- 農(nóng)村機井托管合同范本
- 辦公空房出租合同范本
- 制衣小廠轉(zhuǎn)讓合同范本
- 2025年春新北師大版數(shù)學七年級下冊全冊教案
- 第七章老年人泌尿系統(tǒng)疾病
- 2025年中智科技集團有限公司招聘筆試參考題庫含答案解析
- 2025年山東省郵政招聘筆試參考題庫含答案解析
- 血透室停電停水應(yīng)急預(yù)案
- 人教版小學數(shù)學三年級下冊第一單元《位置與方向(一)》單元測試
- 《零售藥店實務(wù)》期末考試復(fù)習題及答案
- 校園安全案例解析
- 電力變壓器聲紋檢測技術(shù)導(dǎo)則
- 《病理科(中心)建設(shè)與配置標準》
- 《校園廉潔教育》主題班會課件全文
評論
0/150
提交評論