




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
信號(hào)與系統(tǒng)SignalsandSystems吉林大學(xué)TheAnalysisofDiscrete-TimeSystemsinthez-DomainThez-TransformDefinitionofthez-TransformDefinitionofthez-TransformIntuitionontheRelationbetweenZTandLTLT:Let:Definitionofthez-TransformDefinitionBilateral(two-sided)z-Transform:Unilateral(one-sided)z-Transform:Thetransformpairnotation:信號(hào)與系統(tǒng)SignalsandSystems吉林大學(xué)Thez-TransformCommonz-transformpairsCommonz-transformpairsUnitSampleSequenceCommonz-transformpairsOne-sideExponentialSequencewhereaisarealorcomplexnumber.UnitStepSequenceCommonz-transformpairswhere
aisarealorcomplexnumber.信號(hào)與系統(tǒng)SignalsandSystems吉林大學(xué)TheRegionofConvergenceforthez-TransformDefinitionTheRegionofConvergenceforthez-TransformThesetofallcomplexnumberszsuchthatthesummationontheright-handside
convergesiscalledtheregionofconvergence(ROC)ofthez-transformF(z).F(z)converges:f(k)z-kisabsolutelysummableFinite-durationsequenceTheRegionofConvergenceforthez-Transformf(k)=0,k
<k1,k>k2,k1<k2k1<0,k2>0:
k1<0,k2
0:k10,k2
>0:0<|z|<
|z|<
|z|>0Example:CausalsequenceTheRegionofConvergenceforthez-Transformf(k)=0,k<0Example:z-planeak
(k),aisarealorcomplexnumber.AnticausalsequenceTheRegionofConvergenceforthez-TransformExample:f(k)=0,k≥0f(k)=-ak
(-k-1),aisarealorcomplexnumber.Two-sidedsequenceTheRegionofConvergenceforthez-Transformk=-∞→+∞
0<R1<R2<:R1<|z|<R2
R1>R2
:
ROCdoesnotconvergeTheRegionofConvergenceforthez-TransformROCisboundedbypolesorextendstoinfinity.F(z)isrational:f(k)ROCrightsidedoutsidetheoutermostpole——outsidethecircleofradiusequaltothelargestmagnitudeofthepolesofF(z)leftsidedinsidetheinnermostnonzeropole——insidethecircleofradiusequaltothesmallestmagnitudeofthepolesofF(z)otherthananyatz=0andextendinginwardtoandpossiblyincludingz=0.信號(hào)與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——LinearityIff1(k)
F1(z),
1<
z
<
1,f2(k)
F2(z),
2<
z
<
2,thenLinearityExample:Iff1(k)
F1(z),
1<
z
<
1,f2(k)
F2(z),
2<
z
<
2,thenLinearityExample:信號(hào)與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——TimeShiftingTimeShiftingExample:Bilateralz-TransformIff(k)
F(z),
<
z
<
,thenwheremisapositiveinteger.TimeShiftingProof:Unilateralz-Transform——RightshiftIff(k)
F(z),
z
>
,thenwheremisapositiveinteger.TimeShiftingUnilateralz-Transform——RightshiftIff(k)=0,k<0,thenExample:Iff(k)
F(z),
z
>
,thenwheremisapositiveinteger.TimeShiftingUnilateralz-Transform——LeftshiftIff(k)
F(z),
z
>
,thenwheremisapositiveinteger.Proof:TimeShiftingUnilateralz-Transform——LeftshiftIff(k)
F(z),
z
>
,thenwheremisapositiveinteger.Example:
(k+1)信號(hào)與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——Scalinginthez-DomainScalinginthez-DomainProof:Iff(k)
F(z),R1<|z|<R2
,thenaisanonzerorealorcomplexnumber.ROCofF(z):ROCof
:Scalinginthez-DomainIff(k)
F(z),R1<|z|<R2
,thenaisanonzerorealorcomplexnumber.Example:
aksin(
k)
(k),0<a<1Scalinginthez-DomainIff(k)
F(z),R1<|z|<R2
,thenaisanonzerorealorcomplexnumber.Example:(-1)k
(k)信號(hào)與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——ConvolutionConvolutionProof:Iff1(k)
F1(z),
1<z<
1,f2(k)
F2(z),
2<z<
2,thenConvolutionIff1(k)
F1(z),
1<z<
1,f2(k)
F2(z),
2<z<
2,thenExample:(k+1)
(k)LTIsystems:信號(hào)與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——DifferentiationandIntegralinthez-DomainDifferentiationinthez-DomainProof:Iff(k)
F(z),
<
z
<
,then
wherekisanypositiveinteger.Differentiationinthez-DomainIff(k)
F(z),
<
z
<
,then
wherekisanypositiveinteger.Example:Ifa=1,thenDifferentiationinthez-DomainIff(k)
F(z),
<
z
<
,then
wherekisanypositiveinteger.Integralinthez-DomainProof:Iff(k)
F(z),
<
z
<
,then
(misaninteger,andk+m>0)Integralinthez-DomainIff(k)
F(z),
<
z
<
,then
(misaninteger,andk+m>0)Example:Integralinthez-DomainIff(k)
F(z),
<
z
<
,then
(misaninteger,andk+m>0)m=0,k>0:信號(hào)與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——Reflectioninthek-domainReflectioninthek-domainProof:Iff(k)
F(z),
<
z
<
,then
Example:信號(hào)與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——SummationSummationProof:Iff(k)
F(z),
<
z
<
,then
Example:信號(hào)與系統(tǒng)SignalsandSystems吉林大學(xué)Propertiesofthez-Transform——Initial-ValueTheoremandFinal-ValueTheoremInitial-ValueTheoremProof:Iff(k)=0,k<0,andf(k)
F(z),then
Example:0Thez-transformofacausalsequencef(k)isfindf(0).Final-ValueTheoremProof:Iff(k)=0,k<0,f(k)
F(z),a<
z<,0≤a<1,then
Final-ValueTheoremIff(k)=0,k<0,f(k)
F(z),a<
z<,0≤a<1,then
Example:f(k)=0,k<0. aisarealnumber,findf(
).Final-ValueTheorem√√××Final-ValueTheoremIff(k)=0,k<0,f(k)
F(z),a<
z<,0≤a<1,then
Example:f(k)=0,k<0. aisarealnumber,findf(
).Final-ValueTheoremIfF(z)isrationalandthepolesof(z-1)F(z)havemagnitudes<1,then
Example:Thez-transformofacausalsequencef(k)is
Poles:信號(hào)與系統(tǒng)SignalsandSystems吉林大學(xué)TheInversez-TransformTheInversez-Transform(IZT)Integral:DefinitionalongacounterclockwiseclosedcircularcontourthatiscontainedintheROCofF(z).AlternativeproceduresPower-seriesexpansionsPartialfractionexpansionsROCandtheInversez-TransformROCf(k)Causalsequence|z|>af1(k)e
(k)Anticausalsequence|z|<bf2(k)e
(-k-1)Two-sidedsequencea<|z|<b
f1(k)e(k)+
f2(k)e
(-k-1)信號(hào)與系統(tǒng)SignalsandSystems吉林大學(xué)TheInversez-Transform——PartialfractionexpansionsPartialfractionexpansionsRationalpolynomial:Procedure:PartialfractionexpansionsF(z)f(k)×zIZTPartialfractionexpansions
DistinctPolesSupposethatthepolesz1,z1,…,zNofF(z)aredistinctandareallnonzero.(1)|z|>2;(2)|z|<1;(3)1<|z|<2(1)Example:Partialfractionexpansions
DistinctPolesSupposethatthepolesz1,z1,…,zNofF(z)aredistinctandareallnonzero.(1)|z|>2;(2)|z|<1;(3)1<|z|<2(2)Example:Partialfractionexpansions
DistinctPolesSupposethatthepolesz1,z1,…,zNofF(z)aredistinctandareallnonzero.(1)|z|>2;(2)|z|<1;(3)1<|z|<2(3)Example:Partialfractionexpansions
DistinctPolesz1,2=ae±jbROC:|z|>
Complex
Poles:Partialfractionexpansions
DistinctPolesz1,2=ae±jbComplex
Poles:Example:PartialfractionexpansionsRepeatePolesSupposethatthepolez1isrepeatedrtimes.Matchingcoefficients:Example:PartialfractionexpansionsExample:Step1DividethroughtoobtainwhereF1(z)isstrictlyproper.Step2CarryoutthepartialfractionexpansionofF1(z)and,knowingtheROC,obtaintheinversez-transform.信號(hào)與系統(tǒng)SignalsandSystems吉林大學(xué)z-DomainAnalysis—TransformoftheInput/outputDifferenceEquationTransformoftheInput/outputDifferenceEquationLTIsystem:Input:f(k)=0,k<0Initialstate:y(-1),y(-2),…,y(-n)z-Transform:Y(z)=Yzi(z)+Yzs(z)IZT:y(k)=yzi(k)+yzs(k)TransformoftheInput/outputDifferenceEquationExample:y(k)-y(k-1)-2y(k-2)=f(k)+2f(k-2),y(-1)=2,y(-2)=-0.5,f(k)=e(k).Findyzi(k),yzs(k),y(k),k≥0.TransformoftheInput/outputDifferenceEquationExample:y(k)-y(k-1)-2y(k-2)=f(k)+2f(k-2),y(-1)=2,y(-2)=-0.5,f(k)=e(k).Findyzi(k),yzs(k),y(k),k≥0.TransformoftheInput/outputDifferenceEquationExample:y(k)-y(k-1)-2y(k-2)=f(k)+2f(k-2),y(-1)=2,y(-2)=-0.5,f(k)=e(k).Findyzi(k),yzs(k),y(k),k≥0.信號(hào)與系統(tǒng)SignalsandSystems吉林大學(xué)z-DomainAnalysis—TheSystemFunctionTheSystemFunction(TransferFunction)DefinitionDeterminationofthesystemfunction(1)
H(z)=Yzs(z)/F(z)(2)H(z)=Z[h(k)]SystemFunctionofInterconnectionsSeriesconnectionH(z)ParallelconnectionH(z)Parallelconnection
H(z)SystemFunctionforInterconnectionsofLTISystemsExample:Determinethezero-stateoftheLTIsystem.Pole-zeroPlotoftheSystemFunctionPole-zeroplotExample:Aplotofthelocationsinthecomplexplaneofthepolesandzeros.ZerosrootsofN(z)=0——○ZerosrootsofD(z)=0——×zeros:z=0poles:z=1信號(hào)與系統(tǒng)SignalsandSystems吉林大學(xué)z-DomainAnalysis—BlockDiagramRepresentationofDiscrete-timeSystemsinthez-DomainBlockDiagramRepresentationofDiscrete-timeSystemsinthez-DomainMultiplicationbyacoefficientAdderUnitdelayelement(f(-1)=0)信號(hào)與系統(tǒng)SignalsandSystems吉林大學(xué)CausalityandStabilityofDiscrete-TimeSystemsCausalityandStabilityofDiscrete-TimeSystemsCausalityk-domain:LTIsystemcausality
h(k)=0,k<0Proof:Necessity:Letf(k)=d(k)
f(k)=0fork<0,theny(k)=h(k).Ifthesystemiscausal,thenh(k)=0fork<0.Sufficiency:
f(k)=0,k<0
k-i<0(i>k),f(k-i)=0,thenIfh(k)=0,k<0
h(i)=0,i<0,then
yzs(k)=0,k<0CausalityandStabilityofDiscrete-TimeSystemsCausalityk-domain:LTIsystemcausality
h(k)=0,k<0z-domain: ,|z|>R0
AdiscreteLTIsystemiscausalifandonlyifth
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 新興技術(shù)軟件設(shè)計(jì)師考試試題及答案
- 機(jī)電系統(tǒng)優(yōu)化分析方法試題及答案
- 軟考網(wǎng)絡(luò)工程師能力提升試題及答案
- 軟件設(shè)計(jì)師考試全方位考慮及試題答案
- 政策創(chuàng)新的理論框架與實(shí)踐試題及答案
- 公共政策影響評(píng)估的挑戰(zhàn)與解決方案試題及答案
- 雙碳目標(biāo)下的公共政策試題及答案
- 未來(lái)公共政策面臨的挑戰(zhàn)與機(jī)遇分析試題及答案
- 軟件設(shè)計(jì)師考試技巧與策略試題及答案
- 機(jī)電工程行業(yè)技術(shù)提升試題及答案
- 2023年山西文旅集團(tuán)云游山西股份有限公司招聘筆試模擬試題及答案解析
- 關(guān)于生活老師現(xiàn)實(shí)表現(xiàn)總結(jié)簡(jiǎn)述(精選6篇)
- 公務(wù)員轉(zhuǎn)任情況登記表
- 企業(yè)組織架構(gòu)表
- 氣象檢測(cè)器實(shí)測(cè)項(xiàng)目質(zhì)量檢驗(yàn)報(bào)告單
- 揚(yáng)塵污染控制工作臺(tái)帳(揚(yáng)塵防治全套資料)
- 各科室臨床路徑(衛(wèi)生部)2022
- 學(xué)習(xí)宣傳貫徹反有組織犯罪法工作經(jīng)驗(yàn)材料
- 大學(xué)生德育論文范文3000字
- 美術(shù)作品使用授權(quán)書.docx
- 金屬軋制工藝學(xué)1軋制過(guò)程基本參數(shù)
評(píng)論
0/150
提交評(píng)論