版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
信號與系統(tǒng)SignalsandSystems吉林大學(xué)FundamentalConceptsofSignalsFundamentalConceptsofsignals1.Definition:AnalyticrepresentationAsignalisareal-valuedorscalar-valuedfunctionofthetimevariable.2.Description:GraphicalrepresentationFrequency-domainanalysisFundamentalConceptsofsignalsTime-domainrepresentationAnalyticrepresentationGraphicalrepresentationFrequency-domainrepresentationFundamentalConceptsofsignals3.Classification:DeterminatesignalRandomsignal(1)One-dimensionalsignalMulti-dimensionalsignal(2)PeriodicsignalAperiodicsignal(3)EnergysignalPowersignal(4)FundamentalConceptsofsignalsSampledsignalContinuous-timesignal(5)Discrete-timesignalAnaloguesignalPiecewise-continuoussignalDigitalsignalDecompositionmethodFundamentalConceptsofsignals4.Signalsprocessing:(1)DirectcurrentcomponentAlternatingcurrentcomponent(2)EvensignalOddsignalFundamentalConceptsofsignals(3)PulsesStepfunctions(4)RealcomponentImaginarycomponent(5)FundamentalConceptsofsignalsOrthogonalfunctions(6)SuchasIffunctionsandareintegrableontheinterval,andsatisfythenthetwofunctionsandaresaidtobeorthogonalontheinterval.信號與系統(tǒng)SignalsandSystems吉林大學(xué)FundamentalConceptsofSystemsFundamentalconceptsofsystems1.Definition:Asystemisaninterconnectionofcomponentswithterminalsoraccessportsthroughwhichmatter,energy,orinformationcanbeappliedorextracted.Asystemisamathematicalmodelforaphysicalprocessthatrelatestheinputtotheoutput.Fundamentalconceptsofsystems2.Blockdiagramrepresentation:ScalarmultiplierUnit-delayelementFundamentalconceptsofsystemsSummator/adder/subtracterIntegratorFundamentalconceptsofsystems3.Classification:(1)CausalsystemNoncausalsystem(2)Continuous-timesystemDiscrete-timesystem---Describedbyalgebraicequationsordifferentialequations.---Describedbydifferenceequations.Fundamentalconceptsofsystems(3)Time-varyingsystemTime-invariantsystem---Describedbydifferentialequationswithvariablecoefficients.---Describedbydifferentialequationswithconstantcoefficients.Fundamentalconceptsofsystems---Describedbyordinarydifferentialequations.---Describedbypartialdifferentialequations.Distributedparametersystem(5)Lumpedparametersystem(6)StablesystemUnstablesystem(Boundedinputboundedoutput,BIBO)(4)InstantaneoussystemDynamicsystem---Describedbyalgebraicequations.---Describedbydifferentialequations.Fundamentalconceptsofsystems(b)Superposition/Additivity(a)Homogeneity(c)Decomposition(8)LinearsystemNonlinearsystem(7)ReversiblesystemIrreversiblesystemInitialcondition信號與系統(tǒng)SignalsandSystems吉林大學(xué)DeterminationofSystemCharacteristicsDeterminationofsystemcharacteristics[Example]Determineifthesystemdescribedbyislinear,time-invariant,causalandstable.Linearornonlinear?(1)Time-invariantortime-varying?(2)Let?DeterminationofsystemcharacteristicsCausalornoncausal?(3)Stableorunstable?(4)Tobecontinued:Conclusion:Thesystemislinear,time-varying,noncausalandstable.信號與系統(tǒng)SignalsandSystems吉林大學(xué)ModelingandLinearDifferentialEquationsSystemmodeling1ModelingandlineardifferentialequationsFindtheoutputresponsetotheexcitation.Solving2ModelingandlineardifferentialequationsHomogeneoussolutions:Forannth-orderdifferentialequation:Thecharacteristicequation(orauxiliaryequation):ModelingandlineardifferentialequationsTheformsofhomogeneoussolutions--dependentonthecharacteristicrootsWithnsimple(ordistinct)roots:Witharepeatedrootλofmultiplicityrandn-rsimpleroots:Withconjugatecomplexroots:treatedassimplerootsModelingandlineardifferentialequationsParticularsolutions---determinedbytheinput----αisanoncharicteristicroot.----α
isasimpleroot.----α
isarepeatedrootofmultiplicityr.---Zeroisarepeatedrootofmultiplicityr.信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheUnitImpulseandtheUnitStepFunctionTheunitimpulseandtheunitstepfunctionSingularityfunctionsⅠContinuous-timesignalsthatarenotcontinuousatallpointscan’tbedifferentiableatallpoints,buttheymayhaveaderivativeinthegeneralizedsense.AFunctionitselforitsfirstderivative(oritsintegral)hasseveraldiscontinuities.TheunitimpulseandtheunitstepfunctionTwotypicalsingularfunctionsⅡ1.TheintroductionofandTheunitimpulseandtheunitstepfunctionTheunitimpulseandtheunitstepfunction2.Definitions:Theunitimpulseandtheunitstepfunction3.TherelationshipbetweenandThesignalmustbediscontinuousatifitsfirstderivativeinvolves.信號與系統(tǒng)SignalsandSystems吉林大學(xué)ThePropertiesoftheUnitImpulse(I)Thepropertiesoftheunitimpulse(I)Propertyoftranslation1Samplingproperty2Thepropertiesoftheunitimpulse(I)Time-scaling3Proof:Supposethatisanarbitrarytrialfunction.Thepropertiesoftheunitimpulse(I)Multipliedbyanordinaryfunction4Parity5Thepropertiesoftheunitimpulse(I)Thegeneralizedderivatives6Proof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheUnitImpulseResponse(I)Theunitimpulseresponse(I)DefinitionITheimpulseresponseofacausallineartime-invariantcontinuous-timesystemistheoutputresponsewhentheinputistheunitimpulsewithnoinitialenergyinthesystemattime[priortotheapplicationof].Theunitimpulseresponse(I)Discussion:IIWeareinterestedinthemathematicalformof.Theformoftheunitimpulseresponseisdeterminedbythesystemequation,independentoftheapplicationandtheinitialenergy.Theunitimpulseresponse(I)HowtofindⅢTofindviatheunitstepresponseMethod1信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheUnitImpulseResponse(II)Theunitimpulseresponse(II)ImpulseequilibriumformulationMethod2[Example]Findofthesystemdeterminedbythedifferentialequationwithconstantcoefficients,referencedbelow.Analysis:Thestatevariablesjump.Theunitimpulseresponse(II)Theunitimpulseresponse(II)Forannth-ordersystem,referencedbelow,
Ifisoneofthesimpleroots,theformofwillbe:信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheUnitStepResponseTheunitstepresponseDefinition1Thestepresponseofacausallineartime-invariantcontinuous-timesystemisthezero-stateresponsetotheunitstepfunction.Howtofind2Method1TosolvethesystemequationMethod2TofindviaTheunitstepresponseMethod3Comparisonmethod(equilibriumformulation)Decomposition:Theunitstepresponse信號與系統(tǒng)SignalsandSystems吉林大學(xué)ConvolutionIntegralConvolutionintegral
ToexpressintermsofthesumofinfiniteimpulsesConvolutionintegral信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheZero-StateResponsetotheExcitationThezero-stateresponsetotheexcitationLimitsofintegration:ForasignalofForacausalsystemForsignalsandThezero-stateresponsetotheexcitation信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheCommonOperationsofContinuous-TimeSignalsThecommonoperationsofcontinuous-timesignalsAddition1Thecommonoperationsofcontinuous-timesignalsMultiplication2Thecommonoperationsofcontinuous-timesignalsDifferentiation3Thecommonoperationsofcontinuous-timesignalsShift4Time-scaling5Folding6[Example]Thecommonoperationsofcontinuous-timesignalsTheprofileofisgivenbelow,plotasthefunctionoft.信號與系統(tǒng)SignalsandSystems吉林大學(xué)GraphicalRepresentationofConvolutionGraphicalRepresentationofConvolutionGraphicalRepresentationofConvolution信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofConvolutionPropertiesofconvolutionProof:1.CommutativityPropertiesofconvolution2.DistributivitywithadditionPropertiesofconvolution3.Associativity4.DifferentiationandintegrationDifferentiation(1)PropertiesofconvolutionProof:Integration(2)PropertiesofconvolutionCombinationofdifferentiationandintegration(3)ItisrequiredthatDuhamel’sIntegralPropertiesofconvolution5.Shiftintime6.Replication(Convolutionwiththeunitimpulse)Proof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)IntroductionandtheBasicRepresentationofFourierSeriesTheBackgroundofFourierseriesFourierseries(F.S.forshort)isnamedaftertheFrenchmathematicianandphysicistJeanBaptistFourier(1768-1830),whowasthefirstonetoproposethatperiodicwaveformscouldberepresentedbyasumofsinusoids(orcomplexexponentials)inthepaperonheatconductionwhichwaspresentedtoParisAcademyofScience.Fourierwasalsoveryactiveinthepoliticsofhistime.Forexample,heplayedanimportantroleinNapoleon’sexpeditionstoEgyptduringthelate1790s.TheFourierseriesofperiodicsignals--trigonometricseriesTheF.S.intermsoftrigonometricseriesTheFourierseriesofperiodicsignals--harmonicsTheFourierseriesofperiodicsignals--harmonicsTheF.S.intermsofharmonics信號與系統(tǒng)SignalsandSystems吉林大學(xué)ContributionofSymmetryoftotheFourierSeriesContributionofsymmetryoftotheF.S.(1)ContributionofsymmetryoftotheF.S.(2)ContributionofsymmetryoftotheF.S.(3)ContributionofsymmetryoftotheF.S.(4)(5)[Example]ContributionofsymmetryoftotheF.S.信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheFourierSeriesintermsofPeriodicComplexExponentialsTheF.S.intermsofperiodiccomplexexponentialsTheFourierseriesofperiodicsignals--periodiccomplexexponentialsTheF.S.intermsofperiodiccomplexexponentialsTheFourierseriesofperiodicsignals--periodiccomplexexponentials信號與系統(tǒng)SignalsandSystems吉林大學(xué)FrequencySpectraofPeriodicSignalsFrequencyspectraofperiodicsignalsDefinition--Graphsthatfrequencycomponentsforaredisplayedbyverticallines.Description1Howtoplotfrequencyspectra2FrequencyspectraofperiodicsignalsUnilateralspectraBilateralspectraFrequencyspectraofperiodicsignalsExercise:信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheFourierSeriesofaRectangularPulseTrainTheFourierseriesofarectangularpulsetrain1TheFourierseriesofarectangularpulsetrain2TheFourierseriesofarectangularpulsetrain2信號與系統(tǒng)SignalsandSystems吉林大學(xué)FourierTransformandInverseFourierTransformFouriertransformofanaperiodicsignalISpectraldensityfunctionFouriertransformofanaperiodicsignalⅡFouriertransformandinverseFouriertransformFouriertransformofanaperiodicsignal信號與系統(tǒng)SignalsandSystems吉林大學(xué)CommonFourierTransformPairs(1)CommonFouriertransformpairs12CommonFouriertransformpairs3CommonFouriertransformpairs4CommonFouriertransformpairs5CommonFouriertransformpairs6信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofFourierTransformProperty1:LinearityProperty1:LinearityProof:[Example]Property1:Linearity信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofFourierTransformProperty2:DualityProperty2:DualityProof:[Example]Property2:Duality信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofFourierTransformProperty3:MultiplicationbyacomplexexponentialProof:Property3:MultiplicationbyacomplexexponentialMultiplicationbyacomplexexponential(shiftinfrequency)Property3:Multiplicationbyacomplexexponential(1)Inferences:ModulationtheoremModulatingsignalCarriersignalModulatedsignalProperty3:MultiplicationbyacomplexexponentialProperty3:Multiplicationbyacomplexexponential信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofFourierTransformProperty4:ShiftintimeProperty5:TimescalingProperty4:ShiftintimeProof:Property5:TimescalingProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofFourierTransformProperty6:ConjugationandConjugateSymmetryProperty6:ConjugationandConjugateSymmetry(1)Property6:ConjugationandConjugateSymmetry(1)Property6:ConjugationandConjugateSymmetry(2)Property6:ConjugationandConjugateSymmetry(2)Property6:ConjugationandConjugateSymmetry(3)信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofFourierTransformProperty7&8:ConvolutionTheoremsProperty7:Convolutioninthet-domainProof:Property8:Multiplicationinthet-domainMultiplicationinthet-domain(Convolutionintheω-domain)Proof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofFourierTransformProperty9:Differentiationinthetime-domainProperty9:Differentiationinthetime-domainProof:(Suitabletotime-limitedsignals)信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofFourierTransformProperty10:Integrationinthet-domainProperty10:Integrationinthet-domainProof:Property10:Integrationinthet-domainProperty10:Integrationinthet-domainProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofFourierTransformProperty11&12:DifferentiationandIntegrationintheω-DomainProperty11:Differentiationintheω-domainProof:Example:Property11:Differentiationintheω-domainProperty12:Integrationintheω-domain信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheFourierTransformofaPeriodicSignalTheFouriertransformofaperiodicsignalⅠF.T.ofanon-sinusoidalperiodicsignalⅡTherelationshipbetweenandExample:TheFouriertransformofaperiodicsignal信號與系統(tǒng)SignalsandSystems吉林大學(xué)Steady-StateResponsetoNon-SinusoidalPeriodicSignalsSteady-stateresponsetonon-sinusoidalperiodicsignalsExample:信號與系統(tǒng)SignalsandSystems吉林大學(xué)FrequencyResponseFunction(SystemFunction)Frequencyresponsefunction(systemfunction)1.DefinitionFrequencyresponsefunction(systemfunction)Example:Findthesystemfunctionofthecircuitgivenbelow.信號與系統(tǒng)SignalsandSystems吉林大學(xué)ResponsetoAperiodicSignalsResponsetoaperiodicsignalsExample:Responsetoaperiodicsignals信號與系統(tǒng)SignalsandSystems吉林大學(xué)AnalysisofDistortionlessSystemsAnalysisofdistortionlesssystemsⅠDistortionlesssystemAnalysisofdistortionlesssystemsⅡThenecessaryandsufficientconditionofdistortionlesstransmission信號與系統(tǒng)SignalsandSystems吉林大學(xué)AnalysisofIdealLowpassFilters(ILFs)Analysisofideallowpassfilters(ILFs)ⅠThecharacteristicofILFsⅡTheimpulseresponseofILFAnalysisofideallowpassfilters(ILFs)ⅢTheapproximatelydistortionlessconditionofILFsAnalysisofideallowpassfilters(ILFs)ⅣPhysicalrealizabilityofasystemAnalysisofideallowpassfilters(ILFs)——Paley-WienercriterionIntime-domainInfrequency-domain信號與系統(tǒng)SignalsandSystems吉林大學(xué)SamplingandtheFourierTransforms(FTs)ofSampledContinuous-TimeSignalsSamplingandtheFouriertransformofⅠSamplingprocessAsamplingprocessisto“extract”aseriesofdiscretesamplevaluesfromacontinuous-timesignalbyusingasamplingimpulse(orpulse)train.ⅡClassification
Impulse-trainsampling(idealizedsampling)
Rectangularpulse-trainsamplingSamplingandtheFouriertransformofImpulse-trainsampling(idealizedsampling)ⅢTheFTsofsampledcontinuous-timesignalsSamplingandtheFouriertransformofSamplingandtheFouriertransformof信號與系統(tǒng)SignalsandSystems吉林大學(xué)SamplingTheorem(intheTime-Domain)Samplingtheorem(inthetime-domain)Samplingtheorem(inthetime-domain)Asignalwithbandwidthcanbereconstructedcompletelyandexactlyfromthesampledsignalbylowpassfilteringwithcutofffrequencyifthesamplingfrequencyischosentobegreaterthanorequalto.TheminimumsamplingfrequencyiscalledtheNyquistsamplingfrequency.
信號與系統(tǒng)SignalsandSystems吉林大學(xué)DefinitionsofLaplaceTransformandInverseLaplaceTransformDefinitionsofLaplacetransform(LT)andinverseLTFromFouriertransformtoLaplacetransformⅠTheLaplacetransform(LTforshort)ⅡOne-sided(unilateral)LT:Two-sided(bilateral)LT:DefinitionsofLaplacetransform(LT)andinverseLTⅢ信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheRegionofConvergence(ROC)forLaplaceTransformsTheROCoftheLaplacetransform[Example]TheROCoftheLaplacetransformTherangeofvaluesofsforwhichtheintegralinconvergesisreferredtoastheregionofconvergence(ROC)oftheLaplacetransform(LT).Theregionofconvergence(ROC)oftheLTf(t)isintegrablewithin(a,b)(1)(0≤a<b<∞)Foranarbitraryσ0,(2)信號與系統(tǒng)SignalsandSystems吉林大學(xué)CommonLaplaceTransformpairsCommonLaplacetransformpairsCommonone-sidedLTpairsCommonLaplacetransformpairs[Example]信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:LinearityandShiftinthes-DomainProperty1:LinearityProof:Property2:Shiftinthes-domainProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplacetransform:RightShiftinTimeProperty3:RightshiftintimeProof:Property3:Rightshiftintime(3)Property3:RightshiftintimeSolution:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:TimeScalingProperty4:TimescalingProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:ConvolutionTheoremsProperty5:Convolutioninthet-domainProof:Property5:Convolutioninthet-domainContinued:Property
6:Convolutioninthes-domainProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:Differentiationinthet-domainProperty7:Differentiationinthet-domainProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:Integrationinthet-domainProperty8:Integrationinthet-domainProof:Property8:Integrationinthet-domain信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:DifferentiationandIntegrationinthes-DomainProperty9:Differentiationinthes-domainProof:Property10:Integrationinthes-domainProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)PropertiesofLaplaceTransform:InitialandFinal-ValuetheoremsProperty11:Initial-valuetheoremProof:Property12:Final-valuetheoremProof:信號與系統(tǒng)SignalsandSystems吉林大學(xué)ComputationoftheInverseLaplaceTransform(Ⅱ)PartialFractionExpansionComputationoftheinverseLaplacetransform(Ⅱ)Partialfractionexpansion(1)Conditions:ComputationoftheinverseLaplacetransform(Ⅱ)Partialfractionexpansion(2)ComputationoftheinverseLaplacetransform(Ⅱ)Partialfractionexpansion(3)信號與系統(tǒng)SignalsandSystems吉林大學(xué)SolvingtheDifferentialEquationsinthes-DomainSolvingthedifferentialequationsinthes-domain[Example]Given:Find:
Solvingthedifferentialequationsinthes-domainSolvingthedifferentialequationsinthes-domainSolvingthedifferentialequationsinthes-domain信號與系統(tǒng)SignalsandSystems吉林大學(xué)Thes-DomainRepresentationsofCircuits(I)Thes-domainrepresentationsofcircuits(I)1Thes-domainequivalentcircuitelementsThesameresistanceThes-domainrepresentationsofcircuits(I)1Thes-domainequivalentcircuitelementsThes-domainimpedanceThes-domainrepresentationsofcircuits(I)1Thes-domainequivalentcircuitelementsThes-domainimpedanceThes-domainrepresentationsofcircuits(I)2TheformsofKVLandKCLinthes-domain信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheBlockDiagramofaSysteminthes-DomainTheblockdiagramofasysteminthes-domainScalarmultiplier1Adder/Subtractor2Theblockdiagramofasysteminthes-domainIntegrator3信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheDefinitionofTransferFunctionanditsSolutionsThedefinitionoftransferfunctionanditssolutionsThetransferfunctionⅠHowtofind21.GiventhesystemdifferentialequationThedefinitionoftransferfunctionanditssolutionsHowtofind21.GiventhesystemdifferentialequationThedefinitionoftransferfunctionanditssolutions2.Giventheimpulseresponseh(t)Thedefinitionoftransferfunctionanditssolutions3.GiventhestructureofthecircuitUsingthedefinitioninthes-domainrepresentationofthecircuit.4.Usingthepole-zeroplot信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheTransferFunctionandthePole-ZeroPlotThetransferfunctionandthepole-zeroplotPolesandzeros1Zeros:Poles:Thetransferfunctionandthepole-zeroplotThepole-zeroplot2Aplotinthecomplexplaneshowingthelocationsofallthepoles(markedby×)andallthezeros(markedby○)iscalledthepole-zeroplot.Zeros:Poles:信號與系統(tǒng)SignalsandSystems吉林大學(xué)ApplicationsofthePole-ZeroPlot:DeterminingtheFormofh(t)Thepoles
beinglocatedintheopen
left-halfcomplexplane1Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles
beinglocatedintheopen
left-halfcomplexplane1Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles
beinglocatedattheorigin2Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles
beinglocatedontheimaginaryaxis3Applicationsofthepole-zeroplot:Determiningtheformofh(t)Thepoles
beinglocatedintheopen
right-halfcomplexplane4Applicationsofthepole-zeroplot:Determiningtheformofh(t)信號與系統(tǒng)SignalsandSystems吉林大學(xué)Time-DomainAnalysisofDiscrete-TimeSystemsDiscrete-TimeSignalsDiscrete-TimeSignalsAdiscrete-timesignalf(k)hasvaluesforsomediscontinuouspointwhilehasnotdefinitionforotherpoints.k—integerDefinitionDiscrete-TimeSignalsAnalyticalmethod:Graphicalmethod:Sequencemethod:k=0RepresentationDiscrete-TimeSignalEnergyandPowerEnergy:Power:OperationofDiscrete-TimeSignalsAddition:Multiplication:Difference:forwarddifference:backwarddifferenceRunningsum:OperationofDiscrete-TimeSignalsTimeshift(m>0)RightshiftLeftshiftTransformationsoftheIndependentVariableOperationofDiscrete-TimeSignalsTimereversalTransformationsoftheIndependentVariablef(-k)isobtainedfromthesignalf(k)
byareflectionaboutk=0.BasicDiscrete-TimeSignalsUnitImpulseSequence(UnitSampleSequence)BasicDiscrete-TimeSignalsUnitStepSequenceBasicDiscrete-TimeSignalsRelationshipbetweend(k)ande(k)BasicDiscrete-TimeSignalsRectangularSequenceBasicDiscrete-TimeSignalsUnilateralexponentialsequenceswithrealvalues:f(k)=ak
(k)(aisarealnumber)BasicDiscrete-TimeSignalsUnitrampsequenceSinusoidalSequencesComplexExponentialSequences:Canda:complexnumbers信號與系統(tǒng)SignalsandSystems吉林大學(xué)RepresentationsofDiscrete-TimeSystemsRepresentationsofDiscrete-TimeSystemsAdiscrete-timesystemisasystemthattransformsdiscrete-timeinputsintodiscrete-timeoutputs.Definitionf(k):inputy(k):outputInput-outputrelation:f(k)→
y(k)RepresentationsofDiscrete-TimeSystemsnth-orderLinearConstant-CoefficientDifferenceEquation:LTISystemsDescribedbyDifferenceEquatioconstantsRepresentationsofDiscrete-TimeSystemsBlockDiagramRepresentationBasicelementsMultiplicationbyacoefficientAdderUnitDelayElementRepresentationsofDiscrete-TimeSystemsInterconnectionsofSystemsSeries(Cascade)interconnectionParallelinterconnectionFeedbackinterconnection信號與系統(tǒng)SignalsandSystems吉林大學(xué)Linearinput/outputdifferenceequationswithconstantcoefficientsInput:f(k)=0fork<0InitialCondition:y(0),y(1),y(2),…,y(n-1)InitialState:y(-1),y(-2),…,y(-n)Linearinput/outputdifferenceequationswithconstantcoefficientsEquation:Solution:Linearinput/outputdifferenceequationswithconstantcoefficientsTheHomogeneousSolutionHomogeneousequation
CharacteristicequationCharacteristicroot
j(j=1,2,3,
,n)HomogeneoussolutionLinearinput/outputdifferenceequationswithconstantcoefficientsTheHomogeneousSolutionExample:y(k)+3y(k-1)+2y(k-2)=f(k),f(k)=2k,k
≥0,y(0)=0,y(1)=2.Findyh(k)
.Characteristicequation:Homogeneousequation
CharacteristicequationCharacteristicroot
j(j=1,2,3,
,n)HomogeneoussolutionLinearinput/outputdifferenceequationswithconstantcoefficientsTheParticularSolutionLinearinput/outputdifferenceequationswithconstantcoefficientsTheParticularSolutionExample:y(k)+3y(k-1)+2y(k-2)=f(k),f(k)=2k,k
≥0,y(0)=0,y(1)=2.Findyp(k),k
≥0.Letyp(k)=P·2k,k
≥0Substitutethesystemequation:信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheZero-InputResponse
and
TheZero-StateResponseTheZero-InputResponse
Characteristicequation
j,(j=1,2,3,
,n)CharacteristicrootZero-InputResponse
yzi
(0),yzi
(1),…,yzi
(n-1)y(-1),y(-2),…,y(-n)
yzi(k)=y(k)-
yzs(k)=y(k),k<0InitialconditionCharacteristicequation:Characteristicroots:Zero-InputResponse:Example:TheZero-InputResponsey(k)+3y(k-1)+2y(k-2)=f(k),f(k)=2kε(k),y(-1)=0,y(-2)=1/2.Findyzi(k),k
≥0.yzi(k)+3yzi(k-1)+2yzi(k-2)=0TheZero-StateResponseCharacteristicequation
j
(j=1,2,3,
,n)Characteristicroot(distinctroots
j
)Zero-StateResponseyzs(-1)=yzs(-2)=…=yzs
(-n)=0Initialstateyzs(0),yzs
(1),…,yzs
(n-1)Initialcondition信號與系統(tǒng)SignalsandSystems吉林大學(xué)TheUnitSampleResponse
and
TheUnitStepResponseTheUnitSampleResponseDefinitionTheunitsampleresponseisthezero-stateresponseofthesystemresultingfromtheapplicationoftheunitpulse
(k).Denotedh(k)Initialstateh(-1)=h(-2)=…=h(-n)=0Initialconditionh(0),h(1),h(2),…,h(n-1)HowtofindSolvingadifferenceequationZ-transformTheUnitSampleResponseDeterminationk<0:
(k)
=0,h(k)=0k=0:
(k)
=1,h(0)——recursionk>0:
(k)
=0,h(k)——solutionofahomogeneousequationLTI
system:LetthenCi:determinedbyh1(1),h1(2),…,h1(n)TheUnitStepResponseDefinitionTheunitstepresponseisthezero-stateresponseofthesystemresultingfromtheapplicationoftheunit
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鋁合金門窗工程設(shè)計(jì)與施工一體化服務(wù)合同
- 2024年采購合同違約賠償協(xié)議
- 二零二五年度XX地區(qū)污水處理廠污水回用項(xiàng)目合同3篇
- 2025年度鋼筋工程施工安全防護(hù)合同5篇
- 2024消防系統(tǒng)設(shè)備升級改造分包合同協(xié)議3篇
- 二零二五年度環(huán)保節(jié)能包工承包建筑工程合同
- 2025年上教版七年級歷史下冊月考試卷
- 2024版辦公房屋租賃合同范本
- 二零二五年度電纜頂管施工安全生產(chǎn)標(biāo)準(zhǔn)化建設(shè)合同
- 2025年滬科版三年級英語下冊月考試卷
- 2025寒假散學(xué)典禮(休業(yè)式)上校長精彩講話:以董宇輝的創(chuàng)新、羅振宇的堅(jiān)持、馬龍的熱愛啟迪未來
- 2025年浙江中外運(yùn)有限公司招聘筆試參考題庫含答案解析
- 建筑公司2025年度工作總結(jié)和2025年工作安排計(jì)劃
- 電壓損失計(jì)算表
- 福建省福州市2023-2024學(xué)年高二上學(xué)期期末測試英語試卷(含答案)
- 腦疝病人的觀察與護(hù)理
- 人民醫(yī)院建設(shè)項(xiàng)目背景分析
- 初級會計(jì)實(shí)務(wù)題庫(613道)
- 2024年高考地理時事熱點(diǎn):環(huán)保(附答案解析)
- 招標(biāo)代理機(jī)構(gòu)選取技術(shù)標(biāo)投標(biāo)方案(技術(shù)方案)
- 北師大版本八年級上冊第一章單元測試卷(A卷)【含答案】
評論
0/150
提交評論