版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
江蘇省丹陽市丹陽高級中學2025屆高二數(shù)學第一學期期末考試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.數(shù)列滿足,,則()A. B.C. D.22.若拋物線的焦點與橢圓的左焦點重合,則m的值為()A.4 B.-4C.2 D.-23.已知圓M與直線與都相切,且圓心在上,則圓M的方程為()A. B.C. D.4.傾斜角為45°,在y軸上的截距為2022的直線方程是()A. B.C. D.5.若復數(shù)的模為2,則的最大值為()A. B.C. D.6.設,為雙曲線的上,下兩個焦點,過的直線l交該雙曲線的下支于A,B兩點,且滿足,,則雙曲線的離心率為()A. B.C. D.7.雙曲線:的實軸長為()A. B.C.4 D.28.記為等差數(shù)列的前項和.若,,則的公差為()A.1 B.2C.4 D.89.若命題為“,”,則為()A., B.,C., D.,10.已知空間直角坐標系中的點,,,則點P到直線AB的距離為()A. B.C. D.11.已知,,若,則()A.6 B.11C.12 D.2212.已知直線,若異面,,則的位置關系是()A.異面 B.相交C.平行或異面 D.相交或異面二、填空題:本題共4小題,每小題5分,共20分。13.直線被圓截得的弦長為_______14.若函數(shù)在處有極值,則的值為___________.15.已知.若在定義域內(nèi)單調(diào)遞增,則實數(shù)的取值范圍為______.16.過點,且周長最小的圓的標準方程為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓C:9x2+y2=m2(m>0),直線l不過原點O且不平行于坐標軸,l與C有兩個交點A,B,線段AB的中點為M(1)證明:直線OM的斜率與l的斜率的乘積為定值;(2)若l過點,延長線段OM與C交于點P,四邊形OAPB能否為平行四邊形?若能,求此時l的斜率,若不能,說明理由18.(12分)2021年2月12日,辛丑牛年大年初一,由賈玲導演的電影《你好,李煥英》上映,截至到2月21日22點8分,票房攀升至40.25億,反超同期上映的《唐人街探案3》,迎來了2021春節(jié)檔最具戲劇性的一幕.正是因為影片中母女間的這份簡單、純粹、誠摯的情感觸碰了人們內(nèi)心柔軟的地方,打動了萬千觀眾,才贏得了良好的口碑,不少觀眾都流下了感動的淚水.影片結束后,某電影院工作人員當日隨機抽查了100名觀看《你好,煥英》的觀眾,詢問他們在觀看影片的過程中是否“流淚”,得到以下表格:男性觀眾女性觀眾合計流淚20沒有流淚520合計(1)完成表格中的數(shù)據(jù),并判斷是否有99.9%的把握認為觀眾在觀看影片的過程中流淚與性別有關?(2)以分層抽樣的方式,從流淚與沒有流淚的觀眾中抽取5人,然后從這5人中再隨機抽取2人,求這2人都流淚的概率附:0.1000.0500.0100.0012.7063.8416.63510.828,19.(12分)某大學藝術專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:(1)已知樣本中分數(shù)在[40,50)的學生有5人,試估計總體中分數(shù)小于40的人數(shù);(2)試估計測評成績的75%分位數(shù);(3)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例20.(12分)在平面直角坐標系xOy中,已知橢圓的離心率為,且短軸長為2.(1)求橢圓C的方程;(2)設橢圓C的上頂點為B,右焦點為F,直線l與橢圓交于M,N兩點,問是否存在直線l,使得F為的垂心,若存在,求出直線l的方程;若不存在,說明理由.21.(12分)已知拋物線:的焦點為,點在上,點在的內(nèi)側,且的最小值為.(1)求的方程;(2)為坐標原點,點A在y軸正半軸上,點B,C為E上兩個不同的點,其中B點在第四象限,且AB,互相垂直平分,求四邊形AOBC的面積.22.(10分)在△ABC中,角A,B,C所對的邊為a,b,c,其中,,且(1)求角B的值;(2)若,判斷△ABC的形狀
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據(jù)已知分析數(shù)列周期性,可得答案【詳解】解:∵數(shù)列滿足,,∴,,,,故數(shù)列以4為周期呈現(xiàn)周期性變化,由,故,故選C【點睛】本題考查的知識點是數(shù)列的遞推公式,數(shù)列的周期性,難度中檔2、B【解析】根據(jù)拋物線和橢圓焦點與其各自標準方程的關系即可求解.【詳解】由題可知拋物線焦點為,橢圓左焦點為,∴.故選:B.3、A【解析】由題可設,結合條件可得,即求.【詳解】∵圓心在上,∴可設圓心,又圓M與直線與都相切,∴,解得,∴,即圓的半徑為1,圓M的方程為.故選:A.4、A【解析】根據(jù)直線斜率與傾斜角的關系,結合直線斜截式方程進行求解即可.【詳解】因為直線的傾斜角為45°,所以該直線的斜率為,又因為該直線在y軸上的截距為2022,所以該直線的方程為:,故選:A5、A【解析】由題意得,表示以為圓心,2為半徑的圓,表示過原點和圓上的點的直線的斜率,由圖可知,當直線與圓相切時,取得最值,然后求出切線的斜率即可【詳解】因為復數(shù)的模為2,所以,所以其表示以為圓心,2為半徑的圓,如圖所示,表示過原點和圓上的點的直線的斜率,由圖可知,當直線與圓相切時,取得最值,設切線方程為,則,解得,所以的最大值為,故選:A6、A【解析】設,表示出,由勾股定理列式計算得,然后在,再由勾股定理列式,計算離心率.【詳解】由題意得,,且,如圖所示,設,由雙曲線的定義可得,,因為,所以,得,所以,在中,,即.故選:A【點睛】雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:求出,代入公式;②只需要根據(jù)一個條件得到關于的齊次式,結合轉化為的齊次式,然后等式(不等式)兩邊分別除以或轉化為關于的方程(不等式),解方程(不等式)即可得(的取值范圍)7、A【解析】根據(jù)雙曲線的幾何意義即可得到結果.【詳解】因為雙曲線的實軸長為2a,而雙曲線中,,所以其實軸長為故選:A8、C【解析】根據(jù)等差數(shù)列的通項公式及前項和公式利用條件,列出關于與的方程組,通過解方程組求數(shù)列的公差.【詳解】設等差數(shù)列的公差為,則,,聯(lián)立,解得.故選:C.9、B【解析】特稱命題的否定是全稱命題,把存在改為任意,把結論否定.【詳解】“,”的否命題為“,”,故選:B10、D【解析】由向量在向量上的投影及勾股定理即可求.【詳解】,0,,,1,,,,,,在上的投影為,則點到直線的距離為.故選:D11、C【解析】根據(jù)遞推關系式計算即可求出結果.【詳解】因為,,,則,,,故選:C.12、D【解析】以正方體為載體說明即可.【詳解】如下圖所示的正方體:和是異面直線,,;和是異面直線,,與是異面直線.所以兩直線與是異面直線,,則的位置關系是相交或異面.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】求出圓心到直線的距離,結合半徑,利用勾股定理可得答案.【詳解】的圓心坐標為,,圓心到直線的距離,則直線被圓截得的弦長為:故答案為:14、2或6【解析】由解析式得到導函數(shù),結合是函數(shù)極值點,即可求的值.【詳解】由,得,因為函數(shù)在處有極值,所以,即,解得2或6.經(jīng)檢驗,2或6滿足題意.故答案為:2或6.15、【解析】將問題轉化為在上恒成立,再分離參數(shù)轉化為求函數(shù)的最值問題即可得到實數(shù)的取值范圍【詳解】因為,所以;因為在內(nèi)單調(diào)遞增,所以在上恒成立,即在上恒成立,因為,所以.故答案為:16、【解析】方法一:根據(jù)當線段為圓的直徑時,圓周長最小,由線段的中點為圓心,其長一半為半徑求解;方法二:根據(jù)當線段為圓的直徑時,圓周長最小,根據(jù)以AB為直徑的圓的方程求解.【詳解】方法一:當線段為圓的直徑時,過點,的圓的半徑最小,從而周長最小,即圓心為線段的中點,半徑則所求圓的標準方程為方法二:當線段為圓的直徑時,過點,的圓的半徑最小,從而周長最小又,,故所求圓的方程為,整理得,所以所求圓的標準方程為三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)能為平行四邊形;斜率為4-或4+【解析】(1)設兩點坐標,由點差法證明(2)求出兩點坐標,由平行四邊形的幾何性質(zhì)判斷【小問1詳解】設的斜率為,,兩式相減可得,即故【小問2詳解】由(1)得的直線為,直線方程為聯(lián)立,解得聯(lián)立解得若四邊形OAPB為平行四邊形,則對角線互相平分為中點,解得,經(jīng)檢驗,均符合題意故四邊形OAPB能為平行四邊形,此時斜率為4-或4+18、(1)填表見解析;有99.9%的把握認為觀眾在觀看影片的過程中流淚與性別有關;(2)【解析】(1)由已知數(shù)據(jù)可完善列聯(lián)表,然后計算可得結論;(2)根據(jù)分層抽樣定義求出5人中流淚與沒有流淚的觀眾人數(shù)并編號,用列舉法寫出作任取2人的所有基本事件,并得出2人都流淚的基本事件,計數(shù)后可計算概率【詳解】解:(1)男性觀眾女性觀眾合計流淚206080沒有流淚15520合計3565100所以有99.9%的把握認為觀眾在觀看影片的過程中流淚與性別有關(2)以分層抽樣的方式,從流淚與沒有流淚的觀眾中抽取5人,則流淚的觀眾抽到人,記為,,,,沒有流淚的觀眾抽到人,記為從這5人中抽2人有10種情況,分別是,,,,,,,,,其中這2人都流淚有6種情況,分別是,,,,,所以所求概率19、(1)20人(2)(3)【解析】(1)根據(jù)頻率分布直方圖先求出樣本中分數(shù)在[40,90)的頻率,即可解出;(2)先根據(jù)頻率分布直方圖判斷出75%分位數(shù)在[70,80)之間,即可根據(jù)分位數(shù)公式算出;(3)根據(jù)頻率分布直方圖知分數(shù)不小于70分的人數(shù)中男女各占30人,從而可知樣本中男生有60人,女生有40人,即可求出總體中男生和女生人數(shù)的比例【小問1詳解】由頻率分布直方圖知,分數(shù)在[50,90)頻率為(0.01+0.02+0.04+0.02)×10=0.9,在樣本中分數(shù)在[50,90)的人數(shù)為100×0.9=90(人),在樣本中分數(shù)在[40,90)的人數(shù)為95人,所以分數(shù)在[40,90)的人數(shù)為400×0.95=380(人),總體中分數(shù)小于40的人數(shù)為20人【小問2詳解】測試成績從低到高排序,占人數(shù)75%的人分數(shù)在[70,80)之間,所以估計測評成績的75%分位數(shù)為【小問3詳解】由頻率分布直方圖知,分數(shù)不小于70分的人數(shù)共有60人,由已知男女各占30人,從而樣本中男生有60人,女生有40人,故總體中男生與女生的比例為20、(1)(2)存在,【解析】(1)根據(jù)離心率及短軸長,利用橢圓中的關系可以求出橢圓方程;(2)設直線的方程,與橢圓方程聯(lián)立,根據(jù)一元二次方程根與系數(shù)關系,結合已知和斜率公式,可以求出直線的方程.【小問1詳解】,,,,橢圓的標準方程為.【小問2詳解】由已知可得,,,∴,∵,設直線的方程為:,代入橢圓方程整理得,設,,則,,∵,∴.即,因為,,即..所以,或.又時,直線過點,不合要求,所以.故存在直線:滿足題設條件.21、(1)(2)【解析】(1)根據(jù)題意,結合拋物線定義,可求得,即得拋物線方程;(2)由題意推出四邊形AOBC是菱形.,設,根據(jù)拋物線的對稱性,可表示出B,C的坐標,從而利用向量的坐標運算,求得所設參數(shù)值,進而求得答案.【小問1詳解】的準線為:,作于R,根據(jù)拋物線的定義有,所以,因為在的內(nèi)側,所以當P,Q,R三點共線時,取得最小值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版?zhèn)€人對個人民宿短租服務合同3篇
- 二零二五年度版權監(jiān)控合同2篇
- 二零二五版物流配送合同管理員安全生產(chǎn)保障協(xié)議3篇
- 二零二五年度餐飲業(yè)食品安全培訓及咨詢服務合同范本3篇
- 二零二五年電梯安全知識競賽獎品贊助與提供合同3篇
- 二零二五年海參養(yǎng)殖基地與農(nóng)產(chǎn)品營銷策劃公司合作合同文本3篇
- 二零二五年度鋼結構景觀亭臺制作安裝合同3篇
- 二零二五年度CFG樁基施工與監(jiān)理一體化承包合同2篇
- 二零二五年度高鐵站車庫租賃與行李寄存服務合同3篇
- 二零二五年教育培訓機構實習學生勞動合同規(guī)范文本3篇
- 2025年湖北武漢工程大學招聘6人歷年高頻重點提升(共500題)附帶答案詳解
- 【數(shù) 學】2024-2025學年北師大版數(shù)學七年級上冊期末能力提升卷
- GB/T 26846-2024電動自行車用電動機和控制器的引出線及接插件
- 遼寧省沈陽市皇姑區(qū)2024-2025學年九年級上學期期末考試語文試題(含答案)
- 妊娠咳嗽的臨床特征
- 國家公務員考試(面試)試題及解答參考(2024年)
- 《阻燃材料與技術》課件 第6講 阻燃纖維及織物
- 2024年金融理財-擔保公司考試近5年真題附答案
- 泰山產(chǎn)業(yè)領軍人才申報書
- 高中語文古代文學課件:先秦文學
- 人教版五年級上冊遞等式計算100道及答案
評論
0/150
提交評論