版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
青海省海北市2025屆高一上數(shù)學期末檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.為了得到函數(shù)的圖象,只需將余弦曲線上所有的點A.向右平移個單位 B.向左平移個單位C向右平移個單位 D.向左平移個單位2.下列說法不正確的是()A.方向相同大小相等的兩個向量相等B.單位向量模長為一個單位C.共線向量又叫平行向量D.若則ABCD四點共線3.設定義在上的函數(shù)滿足:當時,總有,且,則不等式的解集為()A. B.C. D.4.函數(shù)的圖象的橫坐標和縱坐標同時擴大為原來的3倍,再將圖象向右平移3個單位長度,所得圖象的函數(shù)解析式為A. B.C. D.5.已知x,,且,則A. B.C. D.6.若sinα=,α是第二象限角,則sin(2α+)=()A. B.C. D.7.設集合,,,則()A. B.C. D.8.已知點在第二象限,則角的終邊所在的象限為A.第一象限 B.第二象限C.第三象限 D.第四象限9.已知集合,則=A. B.C. D.10.下列函數(shù)中,既不是奇函數(shù)也不是偶函數(shù)的是A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.的定義域為________________12.以等邊三角形每個頂點為圓心,以邊長為半徑,在另兩個頂點間作一段弧,三段弧圍成的曲邊三角形就是勒洛三角形.勒洛三角形是由德國機械工程專家、機構運動學家勒洛首先發(fā)現(xiàn),所以以他的名字命名.一些地方的市政檢修井蓋、方孔轉機等都有應用勒洛三角形.如圖,已知某勒洛三角形的一段弧的長度為,則該勒洛三角形的面積為___________.13.已知為三角形的邊的中點,點滿足,則實數(shù)的值為_______14.在平面直角坐標系xOy中,角α與角β均以x軸的非負半軸為始邊,它們的終邊關于坐標原點對稱.若sinα=115.《九章算術》是我國古代數(shù)學成就的杰出代表.其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為:弧田面積=(弦矢+).弧田(如圖),由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.現(xiàn)有圓心角為,弦長等于9m的弧田.按照上述經(jīng)驗公式計算所得弧田的面積是________.16.在四邊形ABCD中,若,且,則的面積為_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)判斷并證明的奇偶性;(2)若,求的取值范圍.18.已知,且.(1)求;(2)若,,求的值.19.已知函數(shù)是定義在上的奇函數(shù)(1)求實數(shù)的值;(2)判斷函數(shù)的單調性,并利用定義證明20.在△中,已知,直線經(jīng)過點(Ⅰ)若直線:與線段交于點,且為△外心,求△的外接圓的方程;(Ⅱ)若直線方程為,且△的面積為,求點的坐標21.人類已進入大數(shù)據(jù)時代.目前數(shù)據(jù)量已經(jīng)從級別越升到,,乃至級別.某數(shù)據(jù)公司根據(jù)以往數(shù)據(jù),整理得到如下表格:時間2008年2009年2010年2011年2012年間隔年份(單位:年)01234全球數(shù)據(jù)量(單位:)0.50.751.1251.68752.53125根據(jù)上述數(shù)據(jù)信息,經(jīng)分析后發(fā)現(xiàn)函數(shù)模型能較好地描述2008年全球產(chǎn)生的數(shù)據(jù)量(單位:)與間隔年份(單位:年)的關系.(1)求函數(shù)的解析式;(2)請估計2021年全球產(chǎn)生的數(shù)據(jù)量是2011年的多少倍(結果保留3位小數(shù))?參考數(shù)據(jù):,,,,,.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】利用函數(shù)的圖象變換規(guī)律,得出結論【詳解】把余弦曲線上所有的點向右平行移動個單位長度,可得函數(shù)的圖象,故選C【點睛】本題主要考查函數(shù)的圖象變換規(guī)律,屬于基礎題2、D【解析】利用平面向量相等概念判斷,利用共線向量和單位向量的定義判斷.【詳解】根據(jù)向量相等的概念判斷正確;根據(jù)單位向量的概念判斷正確;根據(jù)共線向量的概念判斷正確;平行四邊形中,因此四點不共線,故錯誤.故選:.【點睛】本題考查了命題真假性的判斷及平面向量的基礎知識,注意反例的積累,屬于基礎題.3、A【解析】將不等式變形后再構造函數(shù),然后利用單調性解不等式即可.【詳解】由,令,可知當時,,所以在定義域上單調遞減,又,即,所以由單調性解得.故選:A4、D【解析】函數(shù)的圖像的橫坐標和縱坐標同時擴大為原來的3倍,所得圖像的解析式為,再向右平移3個單位長度,所得圖像的解析式為,選D.5、C【解析】原不等式變形為,由函數(shù)單調遞增,可得,利用指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調性逐一分析四個選項即可得答案【詳解】函數(shù)為增函數(shù),,即,可得,由指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調性可得,B,D錯誤,根據(jù)遞增可得C正確,故選C【點睛】本題考查指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調性,是中檔題.函數(shù)單調性的應用比較廣泛,是每年高考的重點和熱點內容.歸納起來,常見的命題探究角度有:(1)求函數(shù)的值域或最值;(2)比較兩個函數(shù)值或兩個自變量的大??;(3)解函數(shù)不等式;(4)求參數(shù)的取值范圍或值6、D【解析】根據(jù),求出的值,再將所求式子展開,轉化成關于和的式子,然后代值得出結果【詳解】因為且為第二象限角,根據(jù)得,,再根據(jù)二倍角公式得原式=,將,代入上式得,原式=故選D【點睛】本題考查三角函數(shù)給值求值,在已知角的取值范圍時可直接用同角公式求出正余弦值,再利用和差公式以及倍角公式將目標式轉化成關于和的式子,然后代值求解就能得出結果7、D【解析】根據(jù)交集、補集的定義計算可得;【詳解】解:集合,,,則故選:D8、D【解析】由題意利用角在各個象限符號,即可得出結論.【詳解】由題意,點在第二象限,則角的終邊所在的象限位于第四象限,故選D.【點睛】本題主要考查了三角函數(shù)的定義,以及三角函數(shù)在各個象限的符號,其中熟記三角函數(shù)在各個象限的符號是解答本題的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.9、B【解析】由題意,所以.故選B考點:集合的運算10、D【解析】根據(jù)函數(shù)奇偶性的概念,逐項判斷即可.【詳解】A中,由得,又,所以是偶函數(shù);B中,定義域為R,又,所以是偶函數(shù);C中,定義域為,又,所以是奇函數(shù);D中,定義域為R,且,所以非奇非偶.故選D【點睛】本題主要考查函數(shù)的奇偶性,熟記概念即可,屬于基礎題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由分子根式內部的代數(shù)式大于等于0,分母不等于0列式求解x的取值集合即可得到答案.或x>5.∴的定義域為考點:函數(shù)的定義域及其求法.12、【解析】計算出等邊的邊長,計算出由弧與所圍成的弓形的面積,進而可求得勒洛三角形的面積.【詳解】設等邊三角形的邊長為,則,解得,所以,由弧與所圍成的弓形的面積為,所以該勒洛三角形的面積.故答案為:.13、【解析】根據(jù)向量減法的幾何意義及向量的數(shù)乘便可由得出,再由D為△ABC的邊BC的中點及向量加法的平行四邊形法則即可得出點D為AP的中點,從而便可得出,這樣便可得出λ的值【詳解】=,所以,D為△ABC的邊BC中點,∴∴如圖,D為AP的中點;∴,又,所以-2.故答案為-2.【點睛】本題考查向量減法的幾何意義,向量的數(shù)乘運算,及向量數(shù)乘的幾何意義,向量加法的平行四邊形法則,共線向量基本定理,屬于中檔題.14、-14【解析】根據(jù)題意,利用同角三角函數(shù)的基本關系,再由誘導公式,可得答案.【詳解】∵角α與角β的終邊關于坐標原點對稱,所以β=α+由誘導公式可得:sinβ=-故答案為:-15、.【解析】如下圖所示,在中,求出半徑,即可求出結論.【詳解】設弧田的圓心為,弦為,為中點,連交弧為,則,所以矢長為,在中,,,所以,,所以弧田的面積為.故答案為:.【點睛】本題以數(shù)學文化為背景,考查直角三角形的邊角關系,認真審題是解題的關鍵,屬于基礎題.16、【解析】由向量的加減運算可得四邊形為平行四邊形,再由條件可得四邊形為邊長為4的菱形,由三角形的面積公式計算可得所求值【詳解】在四邊形中,,即為,即,可得四邊形為平行四邊形,又,可得四邊形為邊長為4的菱形,則的面積為正的面積,即為,故答案為:三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)是奇函數(shù),證明見解析(2)【解析】(1)先求函數(shù)的定義域,再利用奇偶性的定義進行判定;(2)先解關于的一元二次不等式得到,再利用對數(shù)函數(shù)的單調性轉化為分式不等式進行求解.【小問1詳解】解:是奇函數(shù),證明如下:令,即,解得,即的定義域為;對于任意,都有,且,即,所以是奇函數(shù).【小問2詳解】解:因為,所以,則,即,所以,因為,所以,所以可化為,解得,即的取值范圍為.18、(1)(2)【解析】(1)根據(jù)三角函數(shù)相關公式化簡求解;(2)根據(jù)三角恒等變換化簡求解.【小問1詳解】解:,由,得,解得又,所以.【小問2詳解】解:若,,則,因為,又,所以,所以,所以19、(1);(2)為減函數(shù);證明見解析【解析】(1)根據(jù)奇函數(shù)的定義,即可求出;(2)利用定義證明單調性【詳解】解:(1),由得,解得另解:由,令得代入得:驗證,當時,,滿足題意(2)為減函數(shù)證明:由(1)知,在上任取兩不相等的實數(shù),,且,,由為上的增函數(shù),,,,,則,函數(shù)為減函數(shù)【點睛】定義法證明函數(shù)單調性的步驟:(1)取值;(2)作差;(3)定號;(4)下結論20、(Ⅰ)(Ⅱ)或【解析】(Ⅰ)先求出直線的方程,進而得到D點坐標,為直徑長,從而得到△的外接圓的方程;(Ⅱ)由題意可得,,從而解得點的坐標【詳解】(Ⅰ)解法一:由已知得,直線的方程為,即,聯(lián)立方程組得:,解得,又,△的外接圓的半徑為∴△的外接圓的方程為.解法二:由已知得,,且為△的外心,∴△為直角三角形,為線段的中點,∴圓心,圓的半徑,∴△的外接圓的方程為.或線段即為△的外接圓的直徑,故有△的外接圓的方程為,即(Ⅱ)設點的坐標為,由已知得,,所在直線方程,到直線的距離,①又點的坐標為滿足方程,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 牛羊零售商店購銷合同
- 建筑垃圾處理棄土堆放合同
- 茶樓裝修合同
- 標準合同復工協(xié)議
- 借款合同中的擔保方式選擇與分析
- 物流資源共享合作合同
- 銀行環(huán)境清潔責任合同
- 租賃服務合同簽訂應注意的法律問題
- 購房合同簽訂流程詳解
- 國際供應鏈合同
- 聲明書:個人婚姻狀況聲明
- 幼兒園年檢整改專項方案
- 新管徑流速流量對照表
- 20以內退位減法口算練習題100題30套(共3000題)
- 咯血病人做介入手術后的護理
- 境外投資環(huán)境分析報告
- 便攜式氣體檢測儀使用方法課件
- 《壓力平衡式旋塞閥》課件
- 信貸支持生豬養(yǎng)殖行業(yè)報告
- 物聯(lián)網(wǎng)與人工智能技術融合發(fā)展年度報告
- 招投標基礎知識講解
評論
0/150
提交評論