2025屆江西省上饒市高一上數(shù)學(xué)期末達標(biāo)檢測試題含解析_第1頁
2025屆江西省上饒市高一上數(shù)學(xué)期末達標(biāo)檢測試題含解析_第2頁
2025屆江西省上饒市高一上數(shù)學(xué)期末達標(biāo)檢測試題含解析_第3頁
2025屆江西省上饒市高一上數(shù)學(xué)期末達標(biāo)檢測試題含解析_第4頁
2025屆江西省上饒市高一上數(shù)學(xué)期末達標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2025屆江西省上饒市高一上數(shù)學(xué)期末達標(biāo)檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),則a,b,c的大小關(guān)系為()A. B.C. D.2.從2020年起,北京考生的高考成績由語文、數(shù)學(xué)、外語3門統(tǒng)一高考成績和考生選考的3門普通高中學(xué)業(yè)水平考試等級性考試科目成績構(gòu)成,等級性考試成績位次由高到低分為A、B、C、D、E,各等級人數(shù)所占比例依次為:A等級15%,B等級40%,C等級30%,D等級14%,E等級1%.現(xiàn)采用分層抽樣的方法,從參加歷史等級性考試的學(xué)生中抽取200人作為樣本,則該樣本中獲得B等級的學(xué)生人數(shù)為()A.30 B.60C.80 D.283.函數(shù)的零點所在區(qū)間是A. B.C. D.4.已知函數(shù),且函數(shù)恰有三個不同的零點,則實數(shù)的取值范圍是A. B.C. D.5.設(shè),且,則()A. B.10C.20 D.1006.已知扇形的圓心角為2弧度,其所對的弦長為2,則扇形的弧長等于A. B.C. D.7.已知函數(shù)若則的值為().A. B.或4C. D.或48.我國古代數(shù)學(xué)名著《數(shù)書九章》中有“天池盆測雨”題:在下雨時,用一個圓臺形的天池盆接雨水.天池盆盆口直徑為二尺八寸,盆底直徑為一尺二寸,盆深一尺八寸.若盆中積水深九寸,則平地降雨量是(注:①平地降雨量等于盆中積水體積除以盆口面積;②一尺等于十寸;③臺體的體積公式).A.2寸 B.3寸C.4寸 D.5寸9.已知棱長為3的正方體ABCD﹣A1B1C1D1內(nèi)部有一圓柱,此圓柱恰好以直線AC1為軸,則該圓柱側(cè)面積的最大值為()A.92πC.23π10.已知是定義在上的奇函數(shù),且,若對任意,都有成立,則的值為()A.2022 B.2020C.2018 D.0二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)函數(shù)是以4為周期的周期函數(shù),且時,,則__________12.若在內(nèi)無零點,則的取值范圍為___________.13.已知關(guān)于不等式的解集為,則的最小值是___________.14.要制作一個容器為4,高為無蓋長方形容器,已知該容器的底面造價是每平方米20元,側(cè)面造價是每平方米10元,則該容器的最低總造價是_______(單位:元)15.若函數(shù)有4個零點,則實數(shù)a的取值范圍為___________.16.已知函數(shù),正實數(shù),滿足,且,若在區(qū)間上的最大值為2,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(且)為奇函數(shù).(1)求n的值;(2)若,判斷函數(shù)在區(qū)間上的單調(diào)性并用定義證明;(3)在(2)的條件下證明:當(dāng)時,.18.已知函數(shù)是奇函數(shù),且;(1)判斷函數(shù)在區(qū)間的單調(diào)性,并給予證明;(2)已知函數(shù)(且),已知在的最大值為2,求的值19.如圖所示,某市政府決定在以政府大樓O為中心,正北方向和正東方向的馬路為邊界的扇形地域內(nèi)建造一個圖書館.為了充分利用這塊土地,并考慮與周邊環(huán)境協(xié)調(diào),設(shè)計要求該圖書館底面矩形的四個頂點都要在邊界上,圖書館的正面要朝市政府大樓.設(shè)扇形的半徑OM=R,∠MOP=45°,OB與OM之間的夾角為θ.(1)將圖書館底面矩形ABCD的面積S表示成θ的函數(shù).(2)若R=45m,求當(dāng)θ為何值時,矩形ABCD的面積S最大?最大面積是多少?(?。?.414)20.已知的部分圖象如圖.(1)求函數(shù)的解析式;(2)求函數(shù)在上的單調(diào)增區(qū)間.21.“綠水青山就是金山銀山”.某企業(yè)決定開發(fā)生產(chǎn)一款大型凈水設(shè)備,生產(chǎn)這款設(shè)備的年固定成本為600萬元,每生產(chǎn)臺需要另投入成本萬元.當(dāng)年產(chǎn)量x不足100臺時,;當(dāng)年產(chǎn)量x不少于100臺時,.若每臺設(shè)備的售價為100萬元時,經(jīng)過市場分析,該企業(yè)生產(chǎn)的凈水設(shè)備能全部售完(1)求年利潤y(萬元)關(guān)于年產(chǎn)量x(臺)的函數(shù)關(guān)系式;(2)當(dāng)年產(chǎn)量x為多少臺時,該企業(yè)在這一款凈水設(shè)備的生產(chǎn)中獲利最大,最大利潤是多少萬元?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】根據(jù)指數(shù)函數(shù)的性質(zhì)求得,,根據(jù)對數(shù)函數(shù)的性質(zhì)求得,即可得到答案.【詳解】由題意,根據(jù)指數(shù)函數(shù)的性質(zhì),可得,由對數(shù)函數(shù)的性質(zhì),知,即所以.故選:D2、C【解析】根據(jù)分層抽樣的概念即得【詳解】由題可知該樣本中獲得B等級的學(xué)生人數(shù)為故選:C3、B【解析】通過計算,判斷出零點所在的區(qū)間.【詳解】由于,,,故零點在區(qū)間,故選B.【點睛】本小題主要考查零點的存在性定理的應(yīng)用,考查函數(shù)的零點問題,屬于基礎(chǔ)題.4、A【解析】函數(shù)恰有三個不同的零點等價于與有三個交點,再分別畫出和的圖像,通過觀察圖像得出a的范圍.【詳解】解:方程所以函數(shù)恰有三個不同的零點等價于與有三個交點記,畫出函數(shù)簡圖如下畫出函數(shù)如圖中過原點虛線l,平移l要保證圖像有三個交點,向上最多平移到l’位置,向下平移一直會有三個交點,所以,即故選A.【點睛】本題考查了函數(shù)的零點問題,解決函數(shù)零點問題常轉(zhuǎn)化為兩函數(shù)交點問題5、A【解析】根據(jù)指數(shù)式與對數(shù)的互化和對數(shù)的換底公式,求得,,進而結(jié)合對數(shù)的運算公式,即可求解.【詳解】由,可得,,由換底公式得,,所以,又因為,可得故選:A.6、A【解析】根據(jù)題意畫出圖形,結(jié)合圖形求出半徑r,再計算弧長【詳解】如圖所示,,,過點O作,C垂足,延長OC交于D,則,;中,,從而弧長為,故選A【點睛】本題考查了弧長公式的應(yīng)用問題,求出扇形的半徑是解題的關(guān)鍵,屬于基礎(chǔ)題7、B【解析】利用分段討論進行求解.【詳解】當(dāng)時,,(舍);當(dāng)時,,或(舍);當(dāng)時,,;綜上可得或.故選:B.【點睛】本題主要考查分段函數(shù)的求值問題,側(cè)重考查分類討論的意識.8、B【解析】根據(jù)題意可得平地降雨量,故選B.考點:1.實際應(yīng)用問題;2.圓臺的體積.9、A【解析】由題知,只需考慮圓柱的底面與正方體的表面相切的情況,即可得出結(jié)論【詳解】由題知,只需考慮圓柱的底面與正方體的表面相切的情況,由圖形的對稱性可知,圓柱的上底面必與過A點的三個面相切,且切點分別在線段AB1,AC,AD1上,設(shè)線段AB1上的切點為E,AC1∩面A1BD=O2,圓柱上底面的圓心為O1,半徑即為O1E=r,則AO2=13AC1=1332+32+3故選A【點睛】本題考查求圓柱側(cè)面積的最大值,考查正方體與圓柱的內(nèi)切問題,考查學(xué)生空間想象與分析解決問題的能力,屬于中檔題10、D【解析】利用條件求出的周期,然后可得答案.【詳解】因為是定義在上的奇函數(shù),且,所以,所以,所以即的周期為4,所以故選:D二、填空題:本大題共6小題,每小題5分,共30分。11、##0.5【解析】利用周期和分段函數(shù)的性質(zhì)可得答案.【詳解】,.故答案為:.12、【解析】求出函數(shù)的零點,根據(jù)函數(shù)在內(nèi)無零點,列出滿足條件的不等式,從而求的取值范圍.【詳解】因為函數(shù)在內(nèi)無零點,所以,所以;由,得,所以或,由,得;由,得;由,得,因為函數(shù)在內(nèi)無零點,所以或或,又因為,所以取值范圍為.故答案為:.13、【解析】由題知,進而根據(jù)基本不等式求解即可.【詳解】解:因為關(guān)于的不等式的解集為,所以是方程的實數(shù)根,所以,因為,所以,當(dāng)且僅當(dāng),即時等號成立,所以的最小值是故答案為:14、160【解析】設(shè)底面長方形的長寬分別為和,先求側(cè)面積,進一步求出總的造價,利用基本不等式求出最小值.【詳解】設(shè)底面長方形的長寬分別為和,則,所以總造價當(dāng)且僅當(dāng)?shù)臅r區(qū)到最小值則該容器的最低總造價是160.故答案為:160.15、【解析】將函數(shù)轉(zhuǎn)化為方程,作出的圖像,結(jié)合圖像分析即可.【詳解】令得,作出的函數(shù)圖像,如圖,因為有4個零點,所以直線與的圖像有4個交點,所以.故答案為:16、【解析】先畫出函數(shù)圖像并判斷,再根據(jù)范圍和函數(shù)單調(diào)性判斷時取最大值,最后計算得到答案.【詳解】如圖所示:根據(jù)函數(shù)的圖象得,所以.結(jié)合函數(shù)圖象,易知當(dāng)時在上取得最大值,所以又,所以,再結(jié)合,可得,所以.故答案為:【點睛】本題考查對數(shù)型函數(shù)的圖像和性質(zhì)、函數(shù)的單調(diào)性的應(yīng)用和最值的求法,是中檔題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)在上單調(diào)遞增,證明見解析;(3)證明見解析.【解析】(1)由奇函數(shù)的定義可得,然后可得,進而計算得出n的值;(2)由可得,則,然后利用定義證明函數(shù)單調(diào)性即可;(3)由(2)知,先可證得,又,可證得,最后得出結(jié)論即可.【詳解】(1)函數(shù)定義域為,且為奇函數(shù),所以有,即,整理得,由條件可得,所以,即;(2)由,得,此時,任取,且,則,因為,所以,,,所以,則,所以,即,所以函數(shù)在上單調(diào)遞增;(3)由(2)知,函數(shù)在上單調(diào)遞增,當(dāng)時,,又,從而,又,而當(dāng)時,,,所以,綜上,當(dāng)時,.【點睛】方法點睛:利用定義證明函數(shù)單調(diào)性的步驟:①取值,②作差、變形(變形主要指通分、因式分解、合并同類項等),③定號,④判斷.18、(1)函數(shù)在區(qū)間是遞增函數(shù);證明見解析;(2)或【解析】(1)由奇函數(shù)定義建立方程組可求出,再用定義法證明單調(diào)性即可;(2)根據(jù)復(fù)合函數(shù)的單調(diào)性,分類討論的單調(diào)性,結(jié)合函數(shù)的單調(diào)性研究最值即可求解【詳解】(1)∵是奇函數(shù),∴,又,且,所以,,經(jīng)檢驗,滿足題意得,所以函數(shù)在區(qū)間是遞增函數(shù)證明如下:且,所以有:由,得,,又,故,所以,即,所以函數(shù)在區(qū)間是遞增函數(shù)(2)令,由(1)可得在區(qū)間遞增函數(shù),①當(dāng)時,是減函數(shù),故當(dāng)取得最小值時,(且)取得最大值2,在區(qū)間的最小值為,故的最大值是,∴②當(dāng)時,是增函數(shù),故當(dāng)取得最大值時,(且)取得最大值2,在區(qū)間的最大值為,故的最大值是,∴或19、(1)S=R2sin-R2,θ∈;(2)當(dāng)θ=時,矩形ABCD面積S最大,最大面積為838.35m2.【解析】(1)設(shè)OM與BC的交點為F,用表示出,,,從而可得面積的表達式;(2)結(jié)合正弦函數(shù)的性質(zhì)求得最大值【詳解】解:(1)由題意,可知點M為PQ的中點,所以O(shè)M⊥AD.設(shè)OM與BC的交點為F,則BC=2Rsinθ,OF=Rcosθ,所以AB=OF-AD=Rcosθ-Rsinθ.所以S=AB·BC=2Rsinθ(Rcosθ-Rsinθ)=R2(2sinθcosθ-2sin2θ)=R2(sin2θ-1+cos2θ)=R2sin-R2,θ∈.(2)因為θ∈,所以2θ+∈,所以當(dāng)2θ+,即θ=時,S有最大值.Smax=(-1)R2=(-1)×452=0.414×2025=838.35(m2).故當(dāng)θ=時,矩形ABCD的面積S最大,最大面積為838.35m2.【點睛】關(guān)鍵點點睛:本題考查三角函數(shù)的應(yīng)用,解題關(guān)鍵是利用表示出矩形的邊長,從而得矩形面積.利用三角函數(shù)恒等變換公式化函數(shù)為一個角的一個三角函數(shù)形式,然后結(jié)合正弦函數(shù)性質(zhì)求得最大值20、(1);(2)和.【解析】(1)由圖知:且可求,再由,結(jié)合已知求,寫出解析式即可.(2)由正弦函數(shù)的單調(diào)性,知上遞增,再結(jié)合給定區(qū)間,討論值確定其增區(qū)間.【詳解】(1)由圖知:且,∴.又,即,而,∴.綜上,.(2)∵,∴.當(dāng)時,;當(dāng)時,,又,∴函數(shù)在上的單調(diào)增區(qū)間為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論