版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年鶴崗市重點中學(xué)第二學(xué)期高三數(shù)學(xué)試題期中考試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線與雙曲線沒有公共點,則雙曲線的離心率的取值范圍是()A. B. C. D.2.已知定義在上的奇函數(shù)滿足:(其中),且在區(qū)間上是減函數(shù),令,,,則,,的大小關(guān)系(用不等號連接)為()A. B.C. D.3.設(shè)函數(shù)的定義域為,滿足,且當時,.若對任意,都有,則的取值范圍是().A. B. C. D.4.若函數(shù)()的圖象過點,則()A.函數(shù)的值域是 B.點是的一個對稱中心C.函數(shù)的最小正周期是 D.直線是的一條對稱軸5.復(fù)數(shù)的虛部是()A. B. C. D.6.已知數(shù)列為等差數(shù)列,且,則的值為()A. B. C. D.7.已知是雙曲線的兩個焦點,過點且垂直于軸的直線與相交于兩點,若,則的內(nèi)切圓半徑為()A. B. C. D.8.已知復(fù)數(shù)(為虛數(shù)單位),則下列說法正確的是()A.的虛部為 B.復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于第三象限C.的共軛復(fù)數(shù) D.9.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.10.中,角的對邊分別為,若,,,則的面積為()A. B. C. D.11.已知復(fù)數(shù)滿足:,則的共軛復(fù)數(shù)為()A. B. C. D.12.集合,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若向量滿足,則實數(shù)的取值范圍是____________.14.設(shè),滿足約束條件,若目標函數(shù)的最大值為,則的最小值為______.15.平面向量與的夾角為,,,則__________.16.設(shè)數(shù)列的前n項和為,且,若,則______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四棱錐中,∥,,點分別為的中點.(1)證明:∥面;(2)若,且,面面,求二面角的余弦值.18.(12分)的內(nèi)角所對的邊分別是,且,.(1)求;(2)若邊上的中線,求的面積.19.(12分)已知數(shù)列是各項均為正數(shù)的等比數(shù)列,數(shù)列為等差數(shù)列,且,,.(1)求數(shù)列與的通項公式;(2)求數(shù)列的前項和;(3)設(shè)為數(shù)列的前項和,若對于任意,有,求實數(shù)的值.20.(12分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在區(qū)間內(nèi)無解,求實數(shù)的取值范圍.21.(12分)若數(shù)列前n項和為,且滿足(t為常數(shù),且)(1)求數(shù)列的通項公式:(2)設(shè),且數(shù)列為等比數(shù)列,令,.求證:.22.(10分)在創(chuàng)建“全國文明衛(wèi)生城”過程中,運城市“創(chuàng)城辦”為了調(diào)查市民對創(chuàng)城工作的了解情況,進行了一次創(chuàng)城知識問卷調(diào)查(一位市民只能參加一次),通過隨機抽樣,得到參加問卷調(diào)查的人的得分統(tǒng)計結(jié)果如表所示:.組別頻數(shù)(1)由頻數(shù)分布表可以大致認為,此次問卷調(diào)查的得分似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),利用該正態(tài)分布,求;(2)在(1)的條件下,“創(chuàng)城辦”為此次參加問卷調(diào)查的市民制定如下獎勵方案:①得分不低于的可以獲贈次隨機話費,得分低于的可以獲贈次隨機話費;②每次獲贈的隨機話費和對應(yīng)的概率為:贈送話費的金額(單位:元)概率現(xiàn)有市民甲參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈的話費,求的分布列與數(shù)學(xué)期望.附:參考數(shù)據(jù)與公式:,若,則,,
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
先求得的漸近線方程,根據(jù)沒有公共點,判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點,所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C【點睛】本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎(chǔ)題.2.A【解析】因為,所以,即周期為4,因為為奇函數(shù),所以可作一個周期[-2e,2e]示意圖,如圖在(0,1)單調(diào)遞增,因為,因此,選A.點睛:函數(shù)對稱性代數(shù)表示(1)函數(shù)為奇函數(shù),函數(shù)為偶函數(shù)(定義域關(guān)于原點對稱);(2)函數(shù)關(guān)于點對稱,函數(shù)關(guān)于直線對稱,(3)函數(shù)周期為T,則3.B【解析】
求出在的解析式,作出函數(shù)圖象,數(shù)形結(jié)合即可得到答案.【詳解】當時,,,,又,所以至少小于7,此時,令,得,解得或,結(jié)合圖象,故.故選:B.【點睛】本題考查不等式恒成立求參數(shù)的范圍,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.4.A【解析】
根據(jù)函數(shù)的圖像過點,求出,可得,再利用余弦函數(shù)的圖像與性質(zhì),得出結(jié)論.【詳解】由函數(shù)()的圖象過點,可得,即,,,故,對于A,由,則,故A正確;對于B,當時,,故B錯誤;對于C,,故C錯誤;對于D,當時,,故D錯誤;故選:A【點睛】本題主要考查了二倍角的余弦公式、三角函數(shù)的圖像與性質(zhì),需熟記性質(zhì)與公式,屬于基礎(chǔ)題.5.C【解析】因為,所以的虛部是,故選C.6.B【解析】
由等差數(shù)列的性質(zhì)和已知可得,即可得到,代入由誘導(dǎo)公式計算可得.【詳解】解:由等差數(shù)列的性質(zhì)可得,解得,,故選:B.【點睛】本題考查等差數(shù)列的下標和公式的應(yīng)用,涉及三角函數(shù)求值,屬于基礎(chǔ)題.7.B【解析】
首先由求得雙曲線的方程,進而求得三角形的面積,再由三角形的面積等于周長乘以內(nèi)切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設(shè)的內(nèi)切圓的半徑為,則,故選:B【點睛】本題考查雙曲線的定義、方程和性質(zhì),考查三角形的內(nèi)心的概念,考查了轉(zhuǎn)化的思想,屬于中檔題.8.D【解析】
利用的周期性先將復(fù)數(shù)化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復(fù)平面內(nèi)對應(yīng)的點為,在第二象限,B錯誤;的共軛復(fù)數(shù)為,C錯誤;,D正確.故選:D.【點睛】本題考查復(fù)數(shù)的四則運算,涉及到復(fù)數(shù)的虛部、共軛復(fù)數(shù)、復(fù)數(shù)的幾何意義、復(fù)數(shù)的模等知識,是一道基礎(chǔ)題.9.B【解析】
還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結(jié)果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關(guān)鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.10.A【解析】
先求出,由正弦定理求得,然后由面積公式計算.【詳解】由題意,.由得,.故選:A.【點睛】本題考查求三角形面積,考查正弦定理,同角間的三角函數(shù)關(guān)系,兩角和的正弦公式與誘導(dǎo)公式,解題時要根據(jù)已知求值要求確定解題思路,確定選用公式順序,以便正確快速求解.11.B【解析】
轉(zhuǎn)化,為,利用復(fù)數(shù)的除法化簡,即得解【詳解】復(fù)數(shù)滿足:所以故選:B【點睛】本題考查了復(fù)數(shù)的除法和復(fù)數(shù)的基本概念,考查了學(xué)生概念理解,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.12.A【解析】
計算,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
根據(jù)題意計算,解得答案.【詳解】,故,解得.故答案為:.【點睛】本題考查了向量的數(shù)量積,意在考查學(xué)生的計算能力.14.【解析】
先根據(jù)條件畫出可行域,設(shè),再利用幾何意義求最值,將最大值轉(zhuǎn)化為軸上的截距,只需求出直線,過可行域內(nèi)的點時取得最大值,從而得到一個關(guān)于,的等式,最后利用基本不等式求最小值即可.【詳解】解:不等式表示的平面區(qū)域如圖所示陰影部分,當直線過直線與直線的交點時,目標函數(shù)取得最大,即,即,而.故答案為.【點睛】本題主要考查了基本不等式在最值問題中的應(yīng)用、簡單的線性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.15.【解析】
由平面向量模的計算公式,直接計算即可.【詳解】因為平面向量與的夾角為,所以,所以;故答案為【點睛】本題主要考查平面向量模的計算,只需先求出向量的數(shù)量積,進而即可求出結(jié)果,屬于基礎(chǔ)題型.16.9【解析】
用換中的n,得,作差可得,從而數(shù)列是等比數(shù)列,再由即可得到答案.【詳解】由,得,兩式相減,得,即;又,解得,所以數(shù)列為首項為-3、公比為3的等比數(shù)列,所以.故答案為:9.【點睛】本題考查已知與的關(guān)系求數(shù)列通項的問題,要注意n的范圍,考查學(xué)生運算求解能力,是一道中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)【解析】
(1)根據(jù)題意,連接交于,連接,利用三角形全等得,進而可得結(jié)論;(2)建立空間直角坐標系,利用向量求得平面的法向量,進而可得二面角的余弦值.【詳解】(1)證明:連接交于,連接,,≌,且,面面,面,(2)取中點,連,.由,面面面,又由,以分別為軸建立如圖所示空間直角坐標系,設(shè),則,,,,,,為面的一個法向量,設(shè)面的法向量為,依題意,即,令,解得,所以,平面的法向量,,又因二面角為銳角,故二面角的余弦值為.【點睛】本題考查直線與平面平行的證明,考查二面角的余弦值的求法,解題時要認真審題,注意中位線和向量法的合理運用,屬于基礎(chǔ)題.18.(1),(2)【解析】
(1)先由正弦定理,得到,進而可得,再由,即可得出結(jié)果;(2)先由余弦定理得,,再根據(jù)題中數(shù)據(jù),可得,從而可求出,得到,進而可求出結(jié)果.【詳解】(1)由正弦定理得,所以,因為,所以,即,所以,又因為,所以,.(2)在和中,由余弦定理得,.因為,,,,又因為,即,所以,所以,又因為,所以.所以的面積.【點睛】本題主要考查解三角形,靈活運用正弦定理和余弦定理即可,屬于??碱}型.19.(1),(2)(3)【解析】
(1)假設(shè)公差,公比,根據(jù)等差數(shù)列和等比數(shù)列的通項公式,化簡式子,可得,,然后利用公式法,可得結(jié)果.(2)根據(jù)(1)的結(jié)論,利用錯位相減法求和,可得結(jié)果.(3)計算出,代值計算并化簡,可得結(jié)果.【詳解】解:(1)依題意:,即,解得:所以,(2),,,上面兩式相減,得:則即所以,(3),所以由得,,即【點睛】本題主要考查等差數(shù)列和等比數(shù)列的綜合應(yīng)用,以及利用錯位相減法求和,屬基礎(chǔ)題.20.(1);(2).【解析】
(1)只需分,,三種情況討論即可;(2)在區(qū)間上恒成立,轉(zhuǎn)化為,只需求出即可.【詳解】(1)當時,,此時不等式無解;當時,,由得;當時,,由得,綜上,不等式的解集為;(2)依題意,在區(qū)間上恒成立,則,當時,;當時,,所以當時,,由得或,所以實數(shù)的取值范圍為.【點睛】本題考查絕對值不等式的解法、不等式恒成立問題,考查學(xué)生分類討論與轉(zhuǎn)化與化歸的思想,是一道基礎(chǔ)題.21.(1)(2)詳見解析【解析】
(1)利用可得的遞推關(guān)系,從而可求其通項.(2)由為等比數(shù)列可得,從而可得的通項,利用錯位相減法可得的前項和,利用不等式的性質(zhì)可證.【詳解】(1)由題意,得:(t為常數(shù),且),當時,得,得.由,故,,故.(2)由,由為等比數(shù)列可知:,又,故,化簡得到,所以或(舍).所以,,則.設(shè)的前n項和為.則,相減可得【點睛】數(shù)列的通項與前項和的關(guān)系式,我們常利用這個關(guān)系式實現(xiàn)與之間的相互轉(zhuǎn)化.數(shù)列求和關(guān)鍵看通項的結(jié)構(gòu)形式,如果通項是等
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 買賣合同模板集錦六篇
- 2024年版短期租房合同樣本
- 2024年版智能家居玻璃膠采購與供應(yīng)合同
- 大班社會教案4篇
- 公司市場部工作計劃模板
- 客服人員個人工作總結(jié)總結(jié)計劃
- 2021-2026年中國抗貧血藥鐵劑行業(yè)市場全景調(diào)研及投資規(guī)劃建議報告
- 一年級語文老師述職報告
- 2022年中職教師工作計劃個人
- 三年級上冊數(shù)學(xué)說課稿范文集錦七篇
- 小學(xué)科學(xué)青島版(六三制)六年級上冊全冊教案(共25課)(2022秋)
- 2024焊接工藝規(guī)程
- 外研版(2024新版)七年級上冊英語期末復(fù)習(xí)Unit1~6共6套學(xué)業(yè)質(zhì)量檢測試卷匯編(含答案)
- 藥理學(xué)期末試卷
- 小學(xué)高年級課后服務(wù) scratch3.0編程教學(xué)設(shè)計 一階第27課 植物大戰(zhàn)僵尸-僵尸來襲教學(xué)設(shè)計
- 2024年人民日報社招聘應(yīng)屆高校畢業(yè)生85人筆試高頻難、易錯點500題模擬試題附帶答案詳解
- 中西醫(yī)結(jié)合科工作制度
- 沈鼓集團招聘筆試題庫2024
- 南平武夷高新技術(shù)產(chǎn)業(yè)控股集團有限公司招聘筆試題庫2024
- 施工現(xiàn)場臨時用電安全監(jiān)理檢查表
- 2024小英新人教版PEP三年級上冊全冊單元測試測評卷
評論
0/150
提交評論