版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2025屆山東省日照市莒縣、嵐山高二數(shù)學第一學期期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,,若直線上存在點P,滿足,則l的傾斜角的取值范圍是()A. B.C D.2.長方體中,,,,為側面內(nèi)(含邊界)的動點,且滿足,則四棱錐體積的最小值為()A. B.C. D.3.設雙曲線的實軸長與焦距分別為2,4,則雙曲線C的漸近線方程為()A. B.C. D.4.已知,,,則,,的大小關系是A. B.C. D.5.若函數(shù)在區(qū)間內(nèi)存在最大值,則實數(shù)的取值范圍是()A. B.C. D.6.已知直線和互相平行,則實數(shù)的取值為()A或3 B.C. D.1或7.曲線在點處的切線過點,則實數(shù)()A. B.0C.1 D.28.對于兩個平面、,“內(nèi)有無數(shù)多個點到的距離相等”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.接種疫苗是預防控制新冠疫情最有效的方法,我國自2021年1月9日起實施全民免費接種新冠疫苗并持續(xù)加快推進接種工作.某地為方便居民接種,共設置了A、B、C三個新冠疫苗接種點,每位接種者可去任一個接種點接種.若甲、乙兩人去接種新冠疫苗,則兩人不在同一接種點接種疫苗的概率為()A. B.C. D.10.《九章算術》是我國古代的數(shù)學名著,書中有如下問題:“今有五人分五錢,令上兩人與下三人等,問各得幾何?”其意思為:“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得之和與丙、丁、戊所得之和相同,且是甲、乙、丙、丁、戊所得以此為等差數(shù)列,問五人各得多少錢?”(“錢”是古代一種重量單位),這個問題中戊所得為()A.錢 B.錢C.錢 D.錢11.已知三棱錐,點分別為的中點,且,用表示,則等于()A. B.C. D.12.已知拋物線,則拋物線的焦點到其準線的距離為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.“第七屆全國畫院美術作品展”于2021年12月2日至2022年2月20日在鄭州美術館展出.已知某油畫作品高2米,寬6米,畫的底部離地有2.7米(如圖所示).有一身高為1.8米的游客從正面觀賞它(該游客頭頂E到眼睛C的距離為10),設該游客離墻距離CD為x米,視角為.為使觀賞視角最大,x應為___________米.14.已知等比數(shù)列中,則q=___15.某工廠生產(chǎn)甲、乙、丙、丁四種不同型號的產(chǎn)品,產(chǎn)量分別為100,200,150,50件.為檢驗產(chǎn)品的質量,現(xiàn)用分層抽樣的方法從以上所有產(chǎn)品中抽取60件進行檢驗,則應從丙種型號的產(chǎn)品中抽取___________件16.寫出同時滿足以下三個條件的數(shù)列的一個通項公式______.①不是等差數(shù)列,②是等比數(shù)列,③是遞增數(shù)列三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線上的點到其焦點F的距離為5.(1)求C的方程;(2)過點的直線l交C于A,B兩點,且N為線段的中點,求直線l的方程.18.(12分)已知拋物線的焦點為,直線與拋物線的準線交于點,為坐標原點,(1)求拋物線的方程;(2)直線與拋物線交于,兩點,求的面積19.(12分)如圖,在三棱錐中,,,記二面角的平面角為(1)若,,求三棱錐的體積;(2)若M為BC的中點,求直線AD與EM所成角的取值范圍20.(12分)已知函數(shù)(1)若在上單調(diào)遞減,求實數(shù)a的取值范圍(2)若是方程的兩個不相等的實數(shù)根,證明:21.(12分)已知圓C的圓心在y軸上,且過點,(1)求圓C的方程;(2)已知圓C上存在點M,使得三角形MAB的面積為,求點M的坐標22.(10分)求適合條件的橢圓的標準方程.(1)長軸長是短軸長的2倍,且過點;(2)在x軸上的一個焦點與短軸兩端點的連線互相垂直,且焦距為6.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據(jù)題意,求得直線恒過的定點,數(shù)形結合只需求得線段與直線有交點時的斜率,結合斜率和傾斜角的關系即可求得結果.【詳解】對直線,變形為,故其恒過定點,若直線存在點P,滿足,只需直線與線段有交點即可.數(shù)形結合可知,當直線過點時,其斜率取得最大值,此時,對應傾斜角;當直線過點時,其斜率取得最小值,此時,對應傾斜角為.根據(jù)斜率和傾斜角的關系,要滿足題意,直線的傾斜角的范圍為:.故選:A.2、D【解析】取的中點,以點為坐標原點,、、的方向分別為、、軸的正方向建立空間直角坐標系,分析可知點的軌跡是以點、為焦點的橢圓,求出橢圓的方程,可知當點為橢圓與棱或的交點時,點到平面的距離取最小值,由此可求得四棱錐體積的最小值.【詳解】取的中點,以點為坐標原點,、、的方向分別為、、軸的正方向建立如下圖所示的空間直角坐標系,設點,其中,,則、,因為平面,平面,則,所以,,同理可得,所以,,所以點的軌跡是以點、為焦點,且長軸長為的橢圓的一部分,則,,,所以,點的軌跡方程為,點到平面的距離為,當點為曲線與棱或棱的交點時,點到平面的距離取最小值,將代入方程得,因此,四棱錐體積的最小值為.故選:D.3、C【解析】由已知可求出,即可得出漸近線方程.【詳解】因為,所以,所以的漸近線方程為.故選:C.4、B【解析】若對數(shù)式的底相同,直接利用對數(shù)函數(shù)的性質判斷即可,若底不同,則根據(jù)結構構造函數(shù),利用函數(shù)的單調(diào)性判斷大小【詳解】對于的大小:,,明顯;對于的大?。簶嬙旌瘮?shù),則,當時,在上單調(diào)遞增,當時,在上單調(diào)遞減,即對于的大小:,,,故選B【點睛】將兩兩變成結構相同的對數(shù)形式,然后利用對數(shù)函數(shù)的性質判斷,對于結構類似的,可以通過構造函數(shù)來來比較大小,此題是一道中等難度的題目5、A【解析】利用函數(shù)的導數(shù),求解函數(shù)的極值,推出最大值,然后轉化列出不等式組求解的范圍即可【詳解】,或,∴在單調(diào)遞減,在單調(diào)遞增,在單調(diào)遞減,∴f(x)有極大值,要使f(x)在上有最大值,則極大值3即為該最大值,則,又或,∴,綜上,.故選:A.6、B【解析】利用兩直線平行的等價條件求得實數(shù)m的值.【詳解】∵兩條直線x+my+6=0和(m﹣2)x+3y+2m=0互相平行,∴解得m=﹣1,故選B【點睛】已知兩直線的一般方程判定兩直線平行或垂直時,記住以下結論,可避免討論:已知,,則,7、A【解析】由導數(shù)的幾何意義得切線方程為,進而得.【詳解】解:因為,,,所以,切線方程為,因為切線過點,所以,解得故選:A8、B【解析】根據(jù)平面的性質分別判斷充分性和必要性.【詳解】充分性:若內(nèi)有無數(shù)多個點到的距離相等,則、平行或相交,故充分性不成立;必要性:若,則內(nèi)每個點到的距離相等,故必要性成立,所以“內(nèi)有無數(shù)多個點到的距離相等”是“”的必要不充分條件.故選:B.9、C【解析】利用古典概型的概率公式可求出結果【詳解】由題知,基本事件總數(shù)為甲、乙兩人不在同一接種點接種疫苗的基本事件數(shù)為由古典概型概率計算公式可得所求概率故選:10、D【解析】根據(jù)題意將實際問題轉化為等差數(shù)列的問題即可解決【詳解】解:由題意,可設甲、乙、丙、丁、戊五人分得的錢分別為,,,,則,,,,成等差數(shù)列,設公差為,整理上面兩個算式,得:,解得,故選:11、D【解析】連接,利用,化簡即可得到答案.【詳解】連接,如下圖.故選:D.12、D【解析】將拋物線方程化為標準方程,由此確定的值即可.【詳解】由可得拋物線標準方程為:,,拋物線的焦點到其準線的距離為.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設,進而得到,,從而求出,再利用基本不等式即可求得答案.【詳解】設,則,,所以,當且僅當時取“=”.所以該游客離墻距離為米時,觀賞視角最大.故答案為:.14、3【解析】根據(jù)等比數(shù)列的性質求得,再根據(jù)等比數(shù)列的通項公式求得答案.【詳解】等比數(shù)列中,故,,所以,故答案為:315、【解析】根據(jù)分層抽樣的方法,即可求解.【詳解】由題意,甲、乙、丙、丁四種不同型號的產(chǎn)品,產(chǎn)量分別為100,200,150,50件,用分層抽樣的方法從以上所有產(chǎn)品中抽取60件進行檢驗,則應從丙種型號的產(chǎn)品中抽取個數(shù)為件.故答案為:.16、【解析】由條件②寫出一個等比數(shù)列,再求出并確保單調(diào)遞增即可作答.【詳解】因是等比數(shù)列,令,當時,,,是遞增數(shù)列,令是互不相等的三個正整數(shù),且,若,,成等差數(shù)列,則,即,則有,顯然、都是正整數(shù),,都是偶數(shù),于是得是奇數(shù),從而有不成立,即,,不成等差數(shù)列,數(shù)列不成等差數(shù)列,所以.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據(jù)拋物線的定義可得,求得,即可得出答案;(2)設,利用點差法求出直線l的斜率,再利用直線的點斜式方程即可得出答案.【小問1詳解】解:由拋物線定義可知:,解得:,∴C的方程為;【小問2詳解】解:設,則,兩式作差得,∴直線l的斜率,∵為的中點,∴,∴,∴直線l的方程為,即(經(jīng)檢驗,所求直線符合條件).18、(1)(2)【解析】(1)根據(jù)題意建立關于的方程,解得的值即可.(2)聯(lián)列方程組并消元,韋達定理整體思想求的長,再求點到直線的距離,進而求面積.【小問1詳解】由題意可得,,則,因為,所以,解得,故拋物線的方程為【小問2詳解】由(1)可知,則點到直線的距離聯(lián)立,整理得設,,則,從而因為直線過拋物線的焦點,所以故的面積為19、(1)(2)【解析】(1)作出輔助線,找到二面角的平面角,利用余弦定理求出,求出底面積和高,進而求出三棱錐的體積;(2)利用空間基底表達出,結合第一問結論求出,從而求出答案.【小問1詳解】取AC的中點F,連接FD,F(xiàn)E,由BC=2,則,故DF⊥AC,EF⊥AC,故∠DFE即為二面角的平面角,即,連接DE,作DH⊥FE,因為,所以平面DEF,因為DH平面DEF,所以AC⊥DH,因為,所以DH⊥平面ABC,因為,由勾股定理得:,,又,由勾股定理逆定理可知,AE⊥CE,且∠BAC=,,在△ABC中,由余弦定理得:,解得:或(舍去),則,因為,,所以△DEF為等邊三角形,則,故三棱錐的體積;【小問2詳解】設,則,,由(1)知:,,取為空間中的一組基底,則,由第一問可知:,則其中,且,,故,由第一問可知,又是的中點,所以,所以,因為三棱錐中,所以,所以,故直線AD與EM所成角范圍為.【點睛】針對于立體幾何中角度范圍的題目,可以建立空間直角坐標系來進行求解,若不容易建立坐標系時,也可以通過基底表達出各個向量,進而求出答案.20、(1);(2)詳見解析【解析】(1)首先求函數(shù)的導數(shù),結合函數(shù)的導數(shù)與函數(shù)單調(diào)性的關系,參變分離后,轉化為求函數(shù)的最值,即可求得實數(shù)的取值范圍;(2)將方程的實數(shù)根代入方程,再變形得到,利用分析法,轉化為證明,通過換元,構造函數(shù),轉化為利用導數(shù)證明,恒成立.【小問1詳解】,,在上單調(diào)遞減,在上恒成立,即,即在,設,,,當時,,函數(shù)單調(diào)遞增,當時,,函數(shù)單調(diào)遞減,所以函數(shù)的最大值是,所以;【小問2詳解】若是方程兩個不相等的實數(shù)根,即又2個不同實數(shù)根,且,,得,即,所以,不妨設,則,要證明,只需證明,即證明,即證明,令,,令函數(shù),所以,所以函數(shù)在上單調(diào)遞減,當時,,所以,,所以,即,即得【點睛】本題考查利用導數(shù)的單調(diào)性求參數(shù)的取值范圍,以及證明不等式,屬于難題,導數(shù)中的雙變量問題,往往采用分析法,轉化為函數(shù)與不等式的關系,通過構造函數(shù),結合函數(shù)的導數(shù),即可證明.21、(1);(2)或.【解析】(1)兩點式求AB所在直線的斜率,結合點坐標求AB的垂直平分線,根據(jù)已知確定圓心、半徑即可得圓C的方程;(2)求AB所在直線方程,幾何關系求弦長,由三角形面積求點線距離,設M所在直線為,由點線距離公式列方程求參數(shù),進而聯(lián)立直線與圓C求M的坐標【小問1詳解】由題意知,AB所在直線的斜率為,又,中點為,所以線段AB的垂直平分線為,即,聯(lián)立,得,半徑,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《制造業(yè)90后產(chǎn)線員工心理壓力、心理彈性與心理健康的關系》
- 2023年清遠市陽山縣碧桂園幼兒園招聘保育員筆試真題
- 2024年企業(yè)內(nèi)部控制與風險管理咨詢合同3篇
- 12《寒冷的冬天》(教學實錄)一年級上冊科學冀教版
- 2024年水電項目咨詢合同3篇
- 臨床醫(yī)生帶教工作總結(10篇)
- 2024年物聯(lián)網(wǎng)智能家居設備采購與安裝合同
- 房產(chǎn)買賣意向協(xié)議書示例
- 集資房購買協(xié)議樣本
- 招標文件范本編輯指南
- 《登岳陽樓》課件+2023-2024學年統(tǒng)編版高中語文必修下冊
- 新進高校教師工作計劃
- 2024年人教版初一生物(上冊)期末試卷及答案(各版本)
- 中考英語688高頻詞大綱詞頻表
- 《馬克思主義發(fā)展史》題集
- 人教新目標版英語七下Unit 11《How was your school trip》(Section A 1a-1c)教學設計
- 大話機器人智慧樹知到期末考試答案章節(jié)答案2024年青海大學
- 含新能源發(fā)電接入的電力系統(tǒng)低頻振蕩阻尼控制研究綜述
- 2024年全國甲卷高考數(shù)學(理數(shù))真題試題(原卷版+含解析)
- 電大建筑材料(A)歷年試題和答案(精)請勿轉載
- 貴州省遵義市播州區(qū)2023-2024學年八年級上學期期末學業(yè)水平監(jiān)測數(shù)學試卷(含解析)
評論
0/150
提交評論